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VOLUME OF SUSPENSION THAT FLOWS THROUGH A SMALL
ORIFICE BEFORE IT CLOGS∗

GUILLERMO H. GOLDSZTEIN†

Abstract. We consider the following experiment. A container is filled with a suspension con-
sisting of particles immersed in an incompressible liquid. An opening is made on the container wall
and the suspension flows through the opening. We develop a mathematical model to compute the
expected volume of suspension extracted before particles clog the opening. Our studies are relevant
to the understanding of clogging of pore throats in porous media, which plays an important role in
geomaterials, biological systems, and industrial applications.
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1. Introduction. The migration of fines, i.e., small particles, in porous media
plays an important role in several engineering applications including oil production,
soil erosion, ground water pollution, and the operation of filter beds. Accordingly,
this topic is an active area of research in a number of disciplines including petroleum,
geotechnical, chemical, environmental, and hydraulic engineering (see [6]).

Soil mass is an example of a porous medium. The particles that hold the material
together form what is known as the load carrying skeleton. Fines are small particles
that do not form part of the load-carrying skeleton. Rocks are other examples of
porous media with fines present in them. A typical size of these fines, which can be
of inorganic, organic, or biological nature, is 1 μm, and they may have an electric
surface charge. If liquid flows through the porous medium, fines attached to pore
surfaces may be released due to hydrodynamic forces. These fines will move with
the flow and be retained at other locations or exit the porous medium. The sites
that retain fines are usually pore constrictions or pore throats. If several migrating
particles reach a small pore throat simultaneously, the particles may clog the pore
throat. More detailed discussions on the physical phenomena that lead to clogging
can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

If fines get captured, the porous medium may become plugged. On the other
hand, when fines exit the medium, the porous medium may erode, which may result
in structural failure. Examples where these phenomena have important consequences
include the following: the extraction of petroleum, where plugging is an undesirable
effect—if the well completely clogs, it can no longer be used; the containment of
contaminants—plugging may help in this situation; the failure of earthen dams and
roads, which can be caused by the erosion that results from particle migration.

In this paper we study the following simple experiment that models aspects of
clogging at a single pore throat. A container is filled with a suspension made of
an incompressible liquid and spherical particles. A circular opening is made in the
container wall through which the suspension flows. The particles may or may not clog
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Fig. 1.1. Suspension in a container. The left-hand image shows the container filled with the
suspension before the opening is made. The right-hand image shows the system at the moment the
opening clogs.

the opening. Our goal is to predict the volume of fluid extracted before clogging (if
clogging does occur). The experiment described is illustrated in Figure 1.1.

The mathematical modeling of migration of fines in porous media is a complex
task that is in its infancy (see [6]). The objective of this paper is to provide a
step toward the more ambitious goal of developing reliable models for studying more
complex problems where migration of fines in porous media plays an important role.

The rest of the paper proceeds as follows. In section 2 we make our physical as-
sumptions and describe our mathematical model. In section 3 we describe a numerical
algorithm to obtain solutions of the model. In section 4 we derive an upper bound on
the volume extracted before clogging, and in section 5 we obtain a lower bound. The
paper ends in section 6 with examples and conclusions.

2. The model. Our model relies on the following approximations. The liquid is
incompressible. The flow is not disturbed by the presence of particles. The center of
each particle flows with the same velocity as the fluid. Before the opening is made,
the center of each particle is randomly placed inside the container with a uniform
probability distribution in space.

Note that the initial location of the centers of the particles are independent ran-
dom variables, and thus we allow particles to overlap.

For each point x in the container, we denote by F (x) the volume of fluid extracted
by the time the element of fluid initially at x reaches the opening. The left-hand image
in Figure 2.1 shows a two-dimensional sketch of level sets of the function F . (The
actual level sets of F are surfaces within the three-dimensional container.) Due to the
incompressibility of the fluid, the region enclosed by the level sets {x : F (x) = V +ΔV }
and {x : F (x) = V } has volume ΔV .

We denote by A the area of the orifice and by v the volume fraction of particles
(i.e., the volume occupied by the particles divided by the volume of the suspension).
All the particles have the same radius r.

To motivate our criteria for clogging, assume that the fluid velocity is constant
in space across the opening and out of the container. Once the volume of suspension
initially in {x : V < F (x) ≤ V + rA} leaves the container, it forms a cylinder with
height r (see the right-hand image in Figure 2.1). Since the centers of particles flow
with the fluid, the number of centers of particles that belong to this cylinder is equal
to the number of centers of particles initially placed in {x : V < F (x) ≤ V + rA}. We
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Fig. 2.1. The left-hand image is a two-dimensional sketch of level sets of F . The region
enclosed by the dashed lines is {x : V < F (x) ≤ V + ΔV }. The right-hand image is a two-
dimensional sketch of the three-dimensional cylinder (enclosed by dashed lines) which is formed by
the suspension initially in {x : V < F (x) ≤ V + rA} as soon as it leaves the container.

denote this number by k(V ), i.e.,

k(V ) = number of particles initially placed in {x : V < F (x) ≤ V + rA}.(2.1)

Note that the particles whose centers belong to the dashed cylinder of Figure 2.1
arrive almost simultaneously at the opening. Thus, we propose that clogging occurs
when k(V ), the number of particles arriving almost simultaneously at the opening,
exceeds a threshold kmax for the first time. Thus, if the opening clogs, the volume of
fluid that is extracted before clogging is

V � = min
{V :V≥0 and k(V )>kmax}

V.(2.2)

We define λ to be the ratio of the volume of the dashed cylinder of Figure 2.1
and the volume of a particle, i.e.,

λ =
3A

4πr2
.(2.3)

Since the number of centers of particles that can belong to the cylinder under the
condition that the particles do not overlap increases linearly with λ, we assume that
kmax is of the form

kmax = γλ,(2.4)

where γ is a material parameter to be experimentally determined. Given a realization
of initial distribution of centers of particles inside the container, (2.1)–(2.4) determine
the extracted volume V �.

3. Algorithm to compute the extracted volume. Assume that the suspen-
sion has volume V and contains a large but finite number N of particles. Then, the
volume fraction of particles is v = N4πr3/(3V). The initial location of the center of
each particle is a random variable with uniform probability distribution. This fact
along with the incompressibility of the fluid implies that the volume extracted by the
time a center of a particle reaches the opening is also a random variable with uni-
form probability distribution. As a consequence, if Vi is the volume extracted when
the ith particle reaches the opening, these volumes Vi are the result of ordering N
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Fig. 3.1. The initial location of the center of the ith particle to reach the opening is xi. The
dashed lines are the level sets of F . Vi = F (xi) is the volume extracted when the center of the ith
particle reaches the opening. V � is the volume extracted before clogging.

numbers selected independently with uniform probability distribution in the interval
[0,V]. This is illustrated in Figure 3.1.

Our criterion for clogging (described in section 2) is illustrated in Figure 3.1. If
we place a segment of length rA on top of the vertical volume axis of Figure 3.1 with
the left end at 0, then move the segment in the upward direction, and stop as soon as
the segment covers more than kmax particles simultaneously, the location of the lower
end of the segment is the extracted volume V �.

The above paragraph can be precisely described as follows. For each i we define
ni to be the largest integer such that Vi−ni+1 > Vi − rA subjected to the restriction
ni ≤ i. If there exists i ∈ [1, N ] such that ni > kmax, clogging occurs. Assuming that
this is the case, let i� = min {i : ni > kmax}. Then

V � =

{
0 if Vi� < rA,
Vi� − rA if Vi� ≥ rA.

(3.1)

The present discussion leads to the following algorithm to compute V � for a given
realization:

i ← 1
n ← 1
While n ≤ kmax and i < N

i ← i + 1
n ← n + 1
While Vi−n+1 ≤ Vi − rA

n ← n− 1
end

end
If i = N and n ≤ kmax then

“No clogging”
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else
V � ← max{0, Vi − rA}

end
The expected volume extracted before clogging, E(V �), is computed by averaging

the values of V � obtained for a large number of different realizations. Note that the
complexity of this algorithm in O(N).

4. Upper bound on the expected extracted volume of suspension before
clogging. Given a realization, the extracted volume before clogging V �, assuming
that clogging does occur, is the minimum of the function f(V ) = V over the set
{V : V ≥ 0 and k(V ) > kmax} (see (2.2)). We define U to be the minimum of the
same function f(V ) = V over a smaller set. More precisely,

U = min
{V :V =irA, i integer, i≥0, k(V )>kmax}

V.(4.1)

Since U and V � are the minimum of the same function f(V ) = V , but the set where
f is minimized to obtain U is a subset of the set where f is minimized to obtain V �,
we have

V � ≤ U.(4.2)

Thus, E(V �) and E(U), the expected values of V � and U , respectively, satisfy

E(V �) ≤ E(U).(4.3)

In Appendix A we show that, if rA � V (V is the initial volume of the suspension),

E(U) =
μ

1 − μ
rA, where μ = e−λv

kmax∑
i=0

(λv)i

i!
,(4.4)

where we recall that v is the volume fraction of the particles and λ was defined in (2.3).
In particular, we also show in Appendix B that, in the parameter regime λv � 1, we
have

E(U) � ([kmax] + 1)!

(λv)[kmax]+1
rA,(4.5)

where [kmax] is the integral part of kmax, i.e., the largest integer that is not greater
than kmax.

5. Lower bound on the expected extracted volume of suspension before
clogging. Let M be the positive integer that satisfies

(M − 1)rA ≤ V � < MrA.(5.1)

The sets {x : (M − 1)rA < F (x) ≤ MrA} and {x : MrA < F (x) ≤ (M + 1)rA}
are disjoint, and their union contains {x : V � < F (x) ≤ V � + rA}. Thus, since
the number of particle centers initially placed in {x : V � < F (x) ≤ V � + rA} is
larger than kmax, the number of particle centers initially placed in one of the sets
{x : (M − 1)rA < F (x) ≤ MrA} or {x : MrA < F (x) ≤ (M + 1)rA} is larger than
kmax/2. In other words, max{k((M − 1)rA), k(MrA)} > kmax/2.



FLOW THROUGH ORIFICE BEFORE CLOGGING 233

We define

L = min
{V :V =irA, i integer, i≥0, k(V )>kmax/2}

V.(5.2)

Given the above discussion, we have that L ≤ MrA. Thus, (5.1) implies

L− rA ≤ V �(5.3)

and thus

E(L) − rA ≤ E(V �),(5.4)

where, as in the previous section, E(.) denotes the expected value of the expression
between brackets.

Following the same arguments to compute the upper bound, we obtain that, in
the regime rA � V,

E(L) =
η

1 − η
rA, where η = e−λv

kmax/2∑
i=0

(λv)i

i!
.(5.5)

In particular, in the parameter regime λv � 1, we have

E(L) � ([kmax/2] + 1)!

(λv)[kmax/2]+1
rA(5.6)

(as before [.] is the integral part of the argument).

6. Examples and conclusions. As an illustrative example, in Figure 6.1 we
show a plot of the expected extracted volume E(V �) and the upper and lower bounds
E(U) and E(L) − rA versus the volume fraction v. The parameter values chosen
are λ = 3 and γ = 1 (and thus, kmax = λ). The expected extracted volumes were

Volume fraction

Fig. 6.1. Normalized expected extracted volume E(V �)/(rA) (dotted line), normalized upper
bound E(U)/(rA) (upper solid line), and normalized lower bound (E(L) − rA)/(rA) (lower solid
line) versus volume fraction v (for λ = 3 and γ = 1).
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numerically computed with the method described in this paper. Note that, for a
circular opening, λ = 3 when the radius of the orifice is twice the radius of the
particles.

We have developed and analyzed a simple mathematical model to predict the
volume of suspension extracted through a small orifice before it clogs. Our model
leads to a simple and efficient numerical algorithm as well as analytic expressions for
lower and upper bounds on the volume extracted. From the expressions of the bounds,
our model reflects the sensitivity of the volume extracted to two key parameters: the
volume fraction of particles, v, and λ, which reflects the ratio between the size of the
orifice and the size of the particles.

A next step will be to validate the model (or relax some of the physical assump-
tions made) by comparing the predictions with experimental measurements. After
the necessary adjustments, a more ambitious goal is to use the results obtained here
as a building block to address more complex problems. These issues will be pursued
in the future.

Appendix A. The expected value of the upper bound. To compute the
upper bound on the expected volume of suspension extracted before clogging, we
need the observations that we describe next. As in the rest of this paper, N is the
number of particles initially placed in the container and V is the initial volume of the
suspension.

Observation 1. Let Ω be a region inside the container, and let |Ω| be its volume.
The probability that the centers of exactly i of the N particles were initially placed in
Ω is

p(i, |Ω|) =
N !

i!(N − i)!

(
|Ω|
V

)i (
1 − |Ω|

V

)N−i

.(A.1)

In particular, this probability depends only on i, N , and the volume of Ω. Moreover,
the asymptotic value p(i, |Ω|) in the regime N � i and V � |Ω| is

p(i, |Ω|) � 1

i!

(
N |Ω|
V

)i

e−
N|Ω|

V .(A.2)

In particular, if |Ω| = rA,

p(i, rA) � 1

i!
(λv)ie−λv(A.3)

(where v is the volume fraction of the particles and λ was defined in (2.3)).
This observation results from the fact that the centers of the particles are placed in

the container randomly with uniform probability distribution, from basic probability
arguments (see any probability text book), and from the equality rAN = λvV.

We use the standard notation P (z) for the probability that the event z is true.
Observation 2. If i is an integer that satisfies i � N , and if rA � V, then for

any 0 ≤ V ≤ V − rA we have

P (k(V ) = i) � 1

i!
(λv)ie−λv.(A.4)

Note, in particular, that P (k(V ) = i) is independent of V .
This observation results from the definition of the function k = k(V ) (see (2.1)),

the fact that the volume of the set {x : V < F (x) ≤ V +rA} is rA, and equation (A.3).
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Observation 3. Let Ω1 and Ω2 be two disjoint regions inside the container. As-
sume that V � max{|Ω1|, |Ω2|}. Let i1 and i2 be two nonnegative integers that satisfy
N � max{i1, i2}. The probability of having placed exactly i1 centers of particles in
Ω1 and i2 centers of particles in Ω2 is asymptotically equal to p(i1, |Ω1|)p(i2, |Ω2|).

The validity of this observation is a consequence of the fact that the placements of
exactly i1 centers of particles in Ω1 and i2 centers of particles in Ω2 are asymptotically
independent events in the regime N � max{i1, i2} and V � max{|Ω1|, |Ω2|}.

Observation 4. Let i and j be two different nonnegative integers, i 	= j. The
random variables k(irA) and k(jrA) are asymptotically independent.

This observation results from the definition of the function k = k(V ), the fact
that the sets {x : jrA < F (x) ≤ (j + 1)rA} and {x : irA < F (x) ≤ (i + 1)rA} are
disjoint, and Observation 3.

Let m be a nonnegative integer. From the definition of U (see (4.1)), we have
U = mrA if k(jrA) ≤ kmax for 0 ≤ j < m and k(mrA) > kmax. Thus,

P (U = mrA) = P (k(jrA) ≤ kmax for j < m and k(mrA) > kmax).(A.5)

Given Observation 4, the m + 1 events k(jrA) ≤ kmax (for 0 ≤ j < m) and
k(mrA) > kmax are asymptotically independent (more precisely, in the parameter
regime mkmax � N). Thus, (A.5) reduces to

P (U = mrA) � P (k(mrA) > kmax)

m−1∏
j=0

P (k(jrA) ≤ kmax).(A.6)

From Observation 2 and the definition of the parameter μ in (4.4), we have that

P (k(jrA) ≤ kmax) � μ and P (k(mrA) > kmax) � 1 − μ.(A.7)

Equations (A.6) and (A.7) imply that

P (U = mrA) � (1 − μ)μm,(A.8)

and thus, in the parameter regime N � kmax, the expected value of U is

E(U) �
∞∑

m=0

mrAP (U = mrA) � rA

∞∑
m=0

m(1 − μ)μm =
μ

1 − μ
rA,(A.9)

which shows the validity of (4.4).

Appendix B. The upper bound in the regime λv � 1. Given the definition
of μ (see (4.4)), we have

eλv(1 − μ) = eλv −
kmax∑
i=0

(λv)i

i!
=

∞∑
i=0

(λv)i

i!
−

kmax∑
i=0

(λv)i

i!
=

∞∑
i=[kmax]+1

(λv)i

i!
.(B.1)

Thus, we have

1 − μ = e−λv (λv)[kmax]+1

([kmax] + 1)!
if λv � 1.(B.2)

Since we clearly have

μ = e−λv if λv � 1,(B.3)

the validity of (4.5) follows.
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