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We consider polycrystals with perfectly plastic grains. We study the two-dimensional
problem that results if the textures and applied stresses are compatible with anti-
plane deformation. We show that the order of magnitude of recently introduced outer
bounds on the strength domain of polycrystals is sharp even under the assumption of
square symmetry on the texture. We also conclude that the fact that the texture has
square symmetry is not enough information to predict the behaviour of polycrystals
if the grains are highly anisotropic.
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1. Introduction

Single crystals are materials whose atoms form a periodic lattice. A consequence of
the periodicity of the atomic lattice is that single crystals are generally anisotropic.
Metals are usually found in the form of polycrystals, that is, large collections of
bonded grains where each grain is a single crystal. Since the orientation of the atomic
lattice varies from grain to grain, the material properties of polycrystals depend not
only on the properties of the grains, but also on the polycrystalline texture, i.e. shape,
orientation and spatial distribution of the grains.

Growing large single crystals is expensive and difficult; consequently, in most appli-
cations, crystalline materials are used in polycrystalline form. The properties of poly-
crystals may differ substantially from those of the corresponding single crystal. Any
isotropic polycrystal whose grains are highly anisotropic is a good example. Further-
more, polycrystals of the same material but with different textures may also exhibit
different properties. Since the texture can be partly controlled, it is valuable to pre-
dict the dependence of the properties of polycrystals on their texture to provide
guidelines in material selection and processing.

The stresses that an homogeneous elastic–perfectly plastic material can withstand
form a closed set K in the space of symmetric 3×3 real matrices. K is called the yield
set or strength domain. The material experiences elastic deformations when subjected
to a stress σ that is in the interior of K (the material returns to its original form
when the applied stress σ is removed). On the other hand, if σ ∈ ∂K (the boundary
of K), the material experiences plastic deformation and continues deforming until
the stress is removed (this is a permanent deformation). If the material is a single
crystal, the set K is convex and is related to the slip systems, which in turn depend

Proc. R. Soc. Lond. A (2003) 459, 1949–1968
1949

c© 2003 The Royal Society



1950 G. H. Goldsztein

on the atomic lattice (Hirth & Lothe 1982; Lubliner 1990). The grains of a large
class of metals can be considered to be elastic–perfectly plastic (Hirth & Lothe 1982;
Lubliner 1990; Bolton 1996).

The texture of a polycrystal is determined by a rotation-valued function R(x).
More precisely, R(x) denotes the orientation of the grain (i.e. the orientation of the
atomic lattice within the grain) that contains the point x.

If the yield set of the reference single crystal is K, then RKRT is the yield set of a
single crystal whose orientation is R. Thus, a polycrystal can only withstand stresses
σ that satisfy the point-wise constraint

RT(x)σ(x)R(x) ∈ K (1.1)

in addition to the equilibrium equations

∇ · σ = 0. (1.2)

Suppose that R(x) is periodic with period cell Q and that Ω is the region occupied
by the polycrystal. A stress field σ is said to be admissible if it is Q-periodic and
satisfies (1.1) and (1.2). In the limit in which the dimensions of Q are much smaller
than those of Ω, a polycrystal, whose grains are elastic–perfectly plastic, behaves as
a material that can only withstand macroscopic stresses in Khom, where

Khom = {τ : τ = 〈σ〉, for some admissible σ}. (1.3)

In the above equation we have used the notation

〈f〉 = |Q|−1
∫

Q

f(x) dx.

See Suquet (1982, 1983, 1987, 1988), de Buhan (1986), Bouchitté & Suquet (1991),
de Buhan & Taliercio (1991), Demengel & Qi (1990), Jikov et al . (1994) and Sab
(1994) for a more detailed discussion.

The set Khom is called the strength domain of the polycrystal. Note that Khom
does not depend on the elastic moduli of the grains, but only on the yield set of the
reference single crystal K and the texture R(x). If the polycrystal is subjected to a
stress in the interior of Khom, some plastic deformation may (and, in general, does)
occur. However, this plastic deformation is localized and limited, i.e. the polycrystal
reaches a certain shape and does not deform further if the stress remains constant.
Once the stress is removed, the polycrystal is left with some permanent deformation
and residual stresses that do depend on the elastic moduli of the grains. If the
polycrystal is subjected to stress in ∂Khom, it deforms and continues to do so until
the stress is removed.

A two-dimensional problem results from considering polycrystals with texture
and under applied stresses compatible with anti-plane deformation. More precisely,
assume that each grain has the shape of an infinite cylinder whose axis is parallel
to the x3-axis, that R(x) is independent of x3 and keeps the x3-axis fixed, and that
we restrict our attention to average stresses whose component 〈σij〉 may only be
non-zero if i �= j and one of the indexes (i or j) is equal to 3. Thus, due to symmetry,
we can assume that σij(x) may only be non-zero if i �= j and one of the indexes is
equal to 3. Under these conditions, (1.1)–(1.3) become a two-dimensional problem.
More precisely, rename the non-zero components of the stress as σi = σi3 (i = 1, 2)
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and denote by σ the two-dimensional vector whose components are σ1 and σ2. The
yield set of the reference single crystal is now a convex set in R

2, that we also denote
by K, and the condition (1.1) reduces to

RT(x)σ(x) ∈ K, (1.4)

where R(x) is now a 2×2 rotation and x ∈ R
2 is in the intersection of the polycrystal

with the plane x3 = 0. Thus, we now say that σ is admissible if it is Q-periodic (Q
is the period cell of R(x)) and satisfies (1.2) and (1.4). The strength domain of the
polycrystal Khom is still given by (1.3) but now Khom is a subset of R

2.
Note that the rotation R(x) is determined by an angle θ(x),

R(x) = Rθ(x) =
[
cos(θ(x)) − sin(θ(x))
sin(θ(x)) cos(θ(x))

]
. (1.5)

We will sometimes refer to θ as the texture of the polycrystal.
Kohn & Little (1998) studied the above-described two-dimensional polycrystal in

the case in which the yield set of the reference single crystal is

K = {σ ∈ R
2 : |σ1| � M and |σ2| � 1}. (1.6)

The parameter M in equation (1.6) is a measure of the anisotropy. As M becomes
large, the single crystal with yield set (1.6) becomes rigid in one direction (i.e. it can
withstand stresses of the form (σ1, 0), where σ1 may be large, |σ1| � M) but remains
ductile in the orthogonal direction (i.e. if the stress is of the form (0, σ2), we have
|σ2| � 1).

A number of schemes have been developed to estimate the mechanical properties
of nonlinear composite materials and polycrystals with nonlinear grains (Sachs 1928;
Taylor 1938; Bishop & Hill 1951; Hutchinson 1976; Willis 1983; Talbot & Willis
1985; Ponte Castañeda 1991, 1996; Dendievel et al . 1991; Suquet 1993; Lebensohn
1993, 1999; Olson 1994; deBotton & Ponte Castañeda 1995). A review of some of
these methods is given in Ponte Castañeda & Suquet (1997). However, no single
estimate can be effectively applied to every material. Moreover, the accuracy of
these approximations is sometimes uncertain.

The two-dimensional model (1.2)–(1.6) is amenable to mathematical analysis and
retains the important effects of nonlinearity and those associated with texture. Thus,
it is an ideal model to test the schemes mentioned above, develop new ones and gain
intuition on the behaviour of real materials. These facts are reflected in the large
number of researchers that have studied this model soon after Kohn & Little (1998)
introduced it (Ponte Castañeda & Nebozhyn 1997; Nesi et al . 2000; Goldsztein 2001).

Kohn & Little (1998) proved that, if Khom is invariant under rotation by π/2, then
Khom ⊆ B√

2M , where Br ⊆ R
2 denotes the ball of radius r centred at the origin.

The estimate computed by Ponte Castañeda & Nebozhyn (1997), which is valid for
isotropic polycrystals, approximates Khom by a ball of radius O(

√
M) smaller than

the Kohn & Little (1998) bound. Nesi et al . (2000) improved upon the Kohn & Little
(1998) bound under the assumption that the polycrystal is isotropic. However, their
bound seems to coincide with the Kohn & Little (1998) bound for values of M larger
than 3.5.

In real applications it is desirable to produce polycrystals that can withstand
large stresses in all directions. A polycrystal can withstand stresses of norm ρ in all
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Figure 1. Texture of the polycrystals to be considered.

directions if and only if ρ � ρ�, where

ρ� = max
Bρ⊆Khom

ρ. (1.7)

Note that Khom = Bρ� if the polycrystal is isotropic.
Goldsztein (2001) showed that ρ� � 4

√
M/π. On the other hand, for each value

of M , Goldsztein constructed a polycrystal whose strength domain contains the set
[−f, f ]×[−f, f ], where f =

√
M − O(1). This shows that a bound of the form ρ� � ρu

that is valid for all polycrystals necessarily satisfies ρu �
√

M − O(1) and thus, the
order of magnitude of the bound obtained by Kohn & Little (1998) is sharp for large
values of M .

However, it is not known if the above-mentioned bounds can be improved if sym-
metry assumptions are made on the texture. Moreover, as pointed out by Kohn &
Little (1998), it is not known if there exists a polycrystal that becomes rigid in all
directions as M → ∞. In other words, fix the texture θ = θ(x) and regard M as a
variable. Thus, ρ� = ρ�(M) becomes a function of M . It is not known if there exists
a texture θ for which limM→∞ ρ�(M) = ∞.

In this paper we resolve the above issues. More precisely, we show that, for any
0 < λ < 1/2, there exists a polycrystal whose texture θ has square symmetry and
satisfies limM→∞ ρ�(M)/Mλ = C, where 0 < C < ∞. In particular, our results
imply that the order of magnitude of the bound of Kohn & Little (1998) is sharp
even under the assumption that the texture has square symmetry. We also conclude
that the fact that the texture has square symmetry is not enough information to
predict the behaviour of polycrystals. Some polycrystals remain ductile for all values
of M (Kohn & Little 1998) and other polycrystals, such as the ones introduced in
this work, become rigid as M → ∞.

In § 2 we introduce the polycrystals under consideration, state the results we
obtained and describe the content of the rest of this paper.

2. Texture and results

Figure 1 shows the texture θ of the polycrystals we will consider. The square enclosed
by dashed lines is the period cell Q = [−1, 1]2. This texture is invariant under
rotation by π/2, i.e. θ(x⊥) + π/2 = θ(x) + kπ, where we have used the notation
(x1, x2)⊥ = (x2,−x1) and k is an integer (θ is defined modulus π because the yield
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set of the reference single crystal (1.6) is invariant under rotation by π). The value
of θ within the white regions is zero and within the light shaded regions is π/2. The
value of θ within the dark shaded regions (five squares) is irrelevant for our purposes.
The boundaries between regions of different shades are straight segments except for
the solid lines, i.e. the curves C1, C2, C3 and C4 are not necessarily straight segments.
We parametrize these curves as

C1 : z1(t) = (g(t), t),

C2 : z2(t) = (t, −g(t)),

C3 : z3(t) = (−g(t),−t),

C4 : z4(t) = (−t, g(t)),




(2.1)

where t ∈ [b, 1].
Let (ti)0�i be the sequence defined by t0 = 1 and ti+1 = g(ti) for all i � 0. We

will require the function g to satisfy the following: g is continuous and is defined in
[b, 1]; t1 = 1 − 2a; ti+1 < ti for all i; g is linear within (ti+1, ti) for all i; g(b) = b and
0 < g′(t) < 1 for all t where g′ is defined. We will also require 3a < 1 and 1− 2a > b.

In § 3 we will derive a relationship between an outer bound on the strength domain
of polycrystals that belong to the class described above and the function g. In § 4 we
will obtain an analogous result that relates an inner bound with g. These formulae
will be evaluated for different choices of g in § 5. In particular, we will show that, if
g is linear,

{‖τ‖1 � C0 log M − D0} ⊆ Khom ⊆ {‖τ‖∞ � C0 log M + E0}, (2.2)

where ‖τ‖1 = |τ1| + |τ2|, ‖τ‖∞ = max{|τ1|, |τ2|} and C0, D0 and E0 are constants
that depend on a and b but are independent of M . C0 is explicitly obtained in § 5.
We also show that for each 0 < α there exists a particular choice of g, so that

{‖τ‖1 � CαM1/(2+α) − DαAM} ⊆ Khom ⊆ {‖τ‖∞ � Cα(2M)1/(2+α) + EαAM},
(2.3)

where Cα, Dα and Eα are constants independent of M , and

AM =




1 if α > 1,

log(M) if α = 1,

M (1−α)/(2+α) if α < 1.

(2.4)

Cα is explicitly obtained in § 5. Note that equation (2.3) implies the result described
in the introduction, i.e. for any 0 < λ < 1/2, there exists a polycrystal whose texture
θ has square symmetry and satisfies limM→∞ ρ�(M)/Mλ = C, where 0 < C < ∞
and ρ� was defined in equation (1.7).

3. Outer bound

(a) Relationship between cuts and outer bounds

Let θ be a [−1, 1]2-periodic texture (not necessarily the one described in § 2). For
convenience, we define e(θ) = (cos(θ), sin(θ)) and since θ is a function of the position
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x, we will also use the notation e(x) = e(θ(x)). Note that the restriction (1.4) can
be written as

|e(x) · σ(x)| � M and |e(x)⊥ · σ(x)| � 1. (3.1)

To compute outer bounds on the strength domain of polycrystals, we will make
use of the following proposition.

Proposition 3.1. Let z = (z1, z2) ∈ R
2 be a vector whose components are even

integers. Let γ : [0, 1] → R
2 be a continuous function that satisfies γ(1) − γ(0) =

−z⊥ = (−z2, z1), the number of points where γ is not differentiable is finite, and
the intersection of γ([0, 1]) with the points of discontinuities of θ is also a finite set.
Then, for any admissible stress field σ (i.e. σ is [−1, 1]2-periodic and satisfies (1.2)
and (3.1)), we have

〈σ〉 · z �
∫ 1

0
|e(γ(s)) · γ̇(s)⊥|M + |e(γ(s)) · γ̇(s)| ds. (3.2)

In the above equation γ̇(s) denotes the derivative of γ(s). The proof of this propo-
sition can be found in Kohn & Little (1998); however, we include a proof here for
completeness.

Proof . If σ is divergence free and [−1, 1]2-periodic, σ = 〈σ〉 + (∇ψ)⊥ for some
[−1, 1]2-periodic function ψ. Thus,∫ 1

0
σ(γ(s)) · γ̇(s)⊥ ds = −

∫ 1

0
〈σ〉⊥ · γ̇(s) ds +

∫ 1

0
∇ψ(γ(s)) · γ̇(s) ds. (3.3)

Since the first integral in the right-hand side of equation (3.3) is equal to 〈σ〉 · z and
the second integral is equal to 0 we have∫ 1

0
σ(γ(s)) · γ̇(s)⊥ ds = 〈σ〉 · z. (3.4)

It follows from the restriction (3.1) that |σ(x) · v| � |e(x) · v|M + |e(x)⊥ · v| for any
admissible stress field σ and any x, v ∈ R

2. This fact and equation (3.4) imply the
validity of the proposition. �

Note that if γ is simple (i.e. injective), the curve C =
⋃

k∈Z
(γ([0, 1]) + kz⊥) splits R

2

into two. We refer to such curves as cuts.
We will use proposition 3.1 in the following form.

Corollary 3.2. Assume that in addition to the conditions of proposition 3.1, γ̇(s)
is either parallel or perpendicular to e(γ(s)) for all s where γ̇(s) is defined. Let T =
{γ(s) : γ̇(s) is parallel to e(γ(s))} and P = {γ(s) : γ̇(s) is perpendicular to e(γ(s))}.
Then, for any admissible stress field σ,

〈σ〉 · z � |T | + M |P |, (3.5)

where |T | and |P | are the lengths of T and P , respectively.

The validity of this corollary follows from the fact that the integral in equation (3.2)
is equal to the right-hand side of (3.5) if γ satisfies the conditions of the corollary.
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Figure 2. The cut to be used to compute the upper bounds.

(b) The cut

We introduce some notation for convenience. If x, y ∈ R
2, [x, y] is the closed

straight segment that joins x and y and |x, y| denotes its length. We denote by p the
function defined on the integers that satisfies p(i) = i if 1 � i � 4 and p(i+4) = p(i)
for all i.

Figure 2 shows the period cell Q = [−1, 1]2 of the texture described in § 2 (see
also figure 1). It also shows three curves: a solid curve U , a dashed curve V and a
dotted curve W. To describe these curves, we introduce the sequence (si)0�i, where
s0 = 1 − a and si+1 = g(si) if i � 0 (the parameter a was introduced in figure 1 and
the function g in equation (2.1)).

The curve U is given by

U =
n+1⋃
i=−1

[ui−1, ui], (3.6)

where u−2 = (−1, 0), u−1 = (−1 + a, 0) and ui = zp(i)(si) for 0 � i � n + 1 (the
definition zk was given in equation (2.1)). Note that for each value of n we have a
different curve U ; for example, in figure 2, n = 3.

The curve V is given by

V =
n−1⋃
i=−1

[vi−1, vi], (3.7)

where v−2 = −u−2 = (1, 0), v−1 = −u−1 = (1 − a, 0) and vi = −ui = zp(i+2)(si) for
0 � i � n − 1; the curve W is given by

W = [un+1, w] ∪ [w, vn−1], (3.8)

where w is defined by the facts that it belongs to the straight line that contains un

and un+1 and [w, vn−1] is perpendicular to [un+1, w].
Note that the union of these curves, which we denote by L = U ∪V ∪W, defines a

simple curve whose end points are (−1, 0) and (1, 0). As figure 2 suggests, P = {x ∈
L : the tangent to L at x is perpendicular to e(x)} = [un+1, w] and T = {x ∈ L :
the tangent to L at x is parallel to e(x)} = L − [un+1, w] − finite number of points.
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Figure 3. Cartoon of the admissible stress field used in the derivation of the inner bound.

(c) Outer bounds

The preceding discussion and corollary 3.2 imply that, for any admissible stress
field σ, we have

〈σ〉 · (0,−2) � M |w, un+1| + |vn−1, w| +
n+1∑
i=−1

|ui−1, ui| +
n−1∑
i=−1

|vi−1, vi|. (3.9)

Simple calculations show the following:

|u−2, u−1| = a,

|u−1, u0| = s1,

|ui−1, ui| = si−1 + si+1,


 0 � i,

|un+1, w| = sn − sn+2,

|w, vn−1| = sn−1 − sn+1,

|ui−1, ui| = |vi−1, vi|,


 for all i.

(3.10)
Thus, equations (3.9) and (3.10), the fact that the texture is invariant under rotation
by π/2, the convexity of Khom, and simple calculations imply

Khom ⊆
{

τ ∈ R
2 : ‖τ‖∞ � M

sn − sn+2

2
+ 1 + 2

n∑
i=1

si

}
(3.11)

(recall that ‖τ‖∞ = max{|τ1|, |τ2|}). Note that the bound (3.11) depends on the
function g, the parameters a and b and the integer n. In § 5 we will compute bounds
for different polycrystals (i.e. various choices of g, a, b).

4. Inner bound

Stress fields can be regarded as velocity fields of an incompressible fluid with constant
density. In this context the equation (1.2) is due to conservation of mass. To derive
our inner bound we will construct an admissible velocity field with the property that
a large amount of fluid per unit time will enter the period cell Q from its left-hand side
and exit through its the right-hand side. The arrows in figure 3 show the approximate
direction and intensity of this velocity field. The two solid curves and the two dashed
curves are the union of segments that are parallel to e(x). Fluid enters the tubular
region enclosed by the solid curves trough the left-hand side of Q. As we follow this
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Figure 4. Polygon P of observation 4.1. The arrows show the direction of σ.

tubular region in the direction of the flow, its width decreases towards zero. Since the
velocity is limited by the restrictions (3.1), conservation of mass implies that fluid
has to exit this tubular region. However, since the solid curves are parallel to e(x)
and given the restrictions (3.1), the rate at which fluid can cross these curves per
unit length is one. These facts will limit the rate (per unit time) at which fluid can
enter this tubular region trough the left-hand side of Q. As fluid leaves the tubular
region enclosed by the solid curves, it goes towards the tubular region enclosed by
the dashed lines, it enters this region and flows towards the right-hand side of Q.
The rest of this section is a detail analysis of this informal discussion.

Spiral flows have also appeared in other contexts. We refer the reader to Bhat-
tacharya et al . (1999) for an example.

(a) Preliminaries

Our analysis will make use of the following observations.

Observation 4.1 Let P be a polygon whose boundary is ∂P = [yr, yl] ∪ [yl, wl] ∪
[wl, wr] ∪ [wr, yr] (see figure 4). Assume that the segments [yr, yl] and [wr, wl] are
parallel. Also assume that 0 � (wl − yl) · (yr − yl) � (yr − yl) · (yr − yl). Let I be the
distance from [yr, yl] to [wr, wl]. Let t = (yl − yr)/‖yl − yr‖2, where we have used the
notation

‖(x, y)‖2 =
√

x2 + y2.

For any λ � 0 and any 0 � f � 1 there exists a divergence-free field σ defined in
P that satisfies

|σ(x) · t| � λ + I−1(f |wl, wr| + |yl, yr|) and |σ(x) · t⊥| � 1 (4.1)

for all x ∈ P, and

σ(x) · n̂(x) =




|yl, wl|−1λI if x ∈ [yl, wl],

f if x ∈ [wl, wr],

1 if x ∈ [yl, yr],

−|yr, wr|−1(λI + f |wl, wr| + |yl, yr|) if x ∈ [yr, wr],

(4.2)

where n̂(x) is the vector of norm one perpendicular to ∂P at x that points in the
outward direction, P.

Proof . Without loss of generality and to simplify the notation, we assume that
yr − yl = (|yr, yl|, 0) and wl − yl = (α, I). Note that 0 � α � |yl, yr|. Let

x0 =
|yl, yr|wl + |wl, wr|fyl

|wl, wr|f + |yl, yr|
. (4.3)
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Figure 5. Polygon P of observation 4.2. The arrows show the direction of σ.
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Figure 6. Polygon Q of observation 4.3. The arrows show the direction of σ.

The dashed lines in figure 4 are two straight segments with x0 as a common vertex.
These lines and ∂P determine three triangles that we denote by Ti (1 � i � 3). We
define

σ(x) =




−(λ + I−1α, 1) if x ∈ T1,

−(λ + I−1(f |wl, wr| + |yl, yr|), 0) if x ∈ T2,

(−λ + I−1αf, f) if x ∈ T3.

(4.4)

It can be shown that σ is divergence free and satisfies both (4.1) and (4.2). �

Observation 4.2 Let P be a polygon whose boundary is ∂P = [yr, yl] ∪ [yl, wl] ∪
[wl, wr] ∪ [wr, yr] (see figure 5). Assume that the segments [yr, yl] and [wr, wl] are
parallel. Also assume that 0 � (wl − yl) · (yr − yl) � (yr − yl) · (yr − yl). Let I be the
distance from [yr, yl] to [wr, wl]. Let t = (yl − yr)/‖yl − yr‖2.

For any 0 � f � 1 and any λ � |yr, yl|/(2I) there exists a divergence-free field σ
defined in P that satisfies

|σ(x) · t| � λ + I−1f |wl, wr| and |σ(x) · t⊥| � 1 (4.5)

for all x ∈ P, and

σ(x) · n̂(x) =




|yl, wl|−1λI if x ∈ [yl, wl],
f if x ∈ [wl, wr],
0 if x ∈ [yl, yr],
−|yr, wr|−1(λI + f |wl, wr|) if x ∈ [yr, wr].

(4.6)

Proof . Assuming that wr − wl = (|wr, wl|, 0) and wl − yl = (α, I), we have that
0 � α � |yl, yr|. Let T1 and T2 be the triangles displayed in figure 5. We define

σ(x) =

{
−(λ + I−1f |wl, wr|, 0) if x ∈ T1,

(−λ + I−1αf, f) if x ∈ T2.
(4.7)

It can be shown that σ is divergence free and satisfies both (4.5) and (4.6). �
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brbl

aral

T1 T2

Figure 7. Polygon R of observation 4.4. The arrows show the direction of σ.

Observation 4.3 Let Q be a polygon whose boundary is ∂Q = [wr, wl]∪ [wl, vl]∪
[vl, vr] ∪ [vr, wr] (see figure 6). Assume that the segments [wr, wl] and [vr, vl] are
parallel. Also assume that 0 � (vl − wl) · (wr − wl) and 0 � (vr − wr) · (wl − wr). Let
I be the distance from [wr, wl] to [vr, vl]. Let t = (wl − wr)/‖wl − wr‖2.

There exists a divergence-free field σ defined in Q that satisfies

|σ(x) · t| � I−1(|wr, wl| − |vr, vl|) and |σ(x) · t⊥| � 1 (4.8)

for all x ∈ Q, and

σ(x) · n̂(x) =




1 if x ∈ [vr, vl],

0 if x ∈ [wl, vl] ∪ [vr, wr],

−|wr, wl|−1|vr, vl| if x ∈ [wr, wl].

(4.9)

Proof . Assume that wr − wl = (|wr, wl|, 0) and vl − wl = (αl, I). We have that
vr − wr = (−αr, I) and 0 � αl, 0 � αr satisfy αl + αr + |vr, vl| = |wr, wl|. Let

x0 =
αrwl + αlwr

αr + αl
. (4.10)

The dashed lines in figure 6 are two straight segments with x0 as a common vertex.
These lines and ∂Q determine three triangles denoted by Ti (1 � i � 3). We define

σ(x) =




|wr, wl|−1|vr, vl|(I−1αl, 1) if x ∈ T1,

(0, 1) if x ∈ T2,

|wr, wl|−1|vr, vl|(−I−1αr, 1) if x ∈ T3.

(4.11)

It can be shown that σ is divergence free and satisfies both (4.8) and (4.9). �

Observation 4.4 Let R be a polygon whose boundary is ∂R = [ar, al] ∪ [al, bl] ∪
[bl, br]∪ [br, ar] (see figure 7). Assume that the segments [ar, al] and [br, bl] are parallel
and the segments [ar, al] and [al, bl] are perpendicular. Also assume that |al, ar| >
|al, bl| and |al, ar| > |bl, br|. Let T1 be the triangle whose vertices are {ar, al, bl} and
T2 the triangle whose vertices are {bl, br, ar}. Let t(x) be the vector field defined by

t(x) =

{
‖bl − al‖−1

2 (bl − al) if x ∈ T1,

‖br − bl‖−1
2 (br − bl) if x ∈ T2.

(4.12)

For any 0 � f � 1 and any

α � max
{

|al, ar|
|al, bl|

,
|bl, br|

|al, ar| − |al, bl|

}
,
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y0

y1
u0

v0v1

w1

x1

x2

w0
u1

Figure 8. Sequences (ui)0�i, (vi)0�i, (wi)0�i and (yi)0�i.

there exists a divergence-free field σ defined in R that satisfies

|σ(x) · t(x)| � α and |σ(x) · t(x)⊥| � 1 (4.13)

for all x ∈ R, and

σ(x) · n̂(x) =




|ar, br|−1α|al, bl| if x ∈ [ar, br],
f if x ∈ [bl, br],
0 if x ∈ [al, bl],
−|al, ar|−1(α|al, bl| + f |bl, br|) if x ∈ [al, ar].

(4.14)

Proof . Let v = ‖bl − al‖−1
2 (bl − al). We define

σ(x) =

{
|al, ar|−1(α|al, bl| + f |bl, br|)t(x) if x ∈ T1,

fv + (α − |al, bl|−1f(|al, ar| − |bl, br|))t(x) if x ∈ T2.
(4.15)

It can be shown that σ is divergence free and satisfies (4.13) and (4.14). �

(b) Family of polygons in Q

We will now define a family of polygons included in Q that will be used to obtain
our inner bounds.

We denote by q the function defined on the integers that satisfies q(i) = i + 1 if
0 � i � 3 and q(i + 4) = q(i) for all i. We recall that (ti)0�i is the sequence defined
as t0 = 1 and ti+1 = g(ti) for i � 0. We will also make use of the functions zk

(1 � k � 4) defined in equation (2.1).
We define the sequences u0 = (t1, t1), ui = zq(i)(ti) (1 � i); vi = zq(i+1)(ti) (0 � i);

w0 = −(t1, t1), wi = zq(i+2)(ti) (1 � i); and yi = zq(i+3)(ti) (0 � i) (see figure 8).
For each i � 0, we denote by Pi the convex hull of {yi, yi+1, wi+1, wi+2} (i.e. the

polygon with vertices {yi, yi+1, wi+1, wi+2}), and analogously we define Qi as the
convex hull of {wi, wi+1, vi+1, vi+2}, Si as the convex hull of {vi, vi+1, ui+1, ui+2},
and Ti as the convex hull of {ui, ui+1, yi+1, yi+2}.

We denote by Ii the distance from [yi, yi+1] to [wi+1, wi+2]. Note that Ii is also
equal to the distance from [wi, wi+1] to [vi+1, vi+2], the distance from [vi, vi+1] to
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[ui+1, ui+2], and the distance from [ui, ui+1] to [yi+1, yi+2]. It can be shown that

Ii = ti+1 − ti+2 for i � 0. (4.16)

We will also need the following formulae:

|yi, yi+1| = |wi, wi+1| = |vi, vi+1| = |ui, ui+1| = ti + ti+2 if i � 1,

|y0, y1| = |v0, v1| = t0 + t2, |w0, w1| = |u0, u1| = t1 + t2.

}
(4.17)

We note that e(x) = e(θ(x)) is parallel to [yi, yi+1] and [wi+1, wi+2] for all x ∈ Pi,
e(x) is parallel to [wi, wi+1] and [vi+1, vi+2] for all x ∈ Qi, e(x) is parallel to [vi, vi+1]
and [ui+1, ui+2] for all x ∈ Si, and e(x) is parallel to [ui, ui+1] and [yi+1, yi+2] for all
x ∈ Ti.

We also define R1 to be the convex hull of {y0, w0, w1, x1}, where x1 = (−1,−1 +
2a), and R2 the convex hull of {x2, u0, v0, u1}, where x2 = (1, 1 − 2a). Note that
R2 = −R1 (see figure 8).

(c) Divergence-free fields in the polygons

We will now define a divergence-free field within each of the polygons introduced
in § 4 b. Some of these divergence-free fields will depend on parameters which will be
chosen later in this section.

Let 0 � f0 � 1 and λ0 � |y0, y1|/(2I0). We define σp
0 to be a divergence-free field

defined in P0 that satisfies

|σp
0(x) · e(x)| � λ0 + I−1

0 f0|w2, w1| and |σp
0(x) · e(x)⊥| � 1 (4.18)

for all x ∈ P0 and

σp
0(x) · n̂(x) =




|y1, w2|−1λ0I0 if x ∈ [y1, w2],

f0 if x ∈ [w2, w1],

0 if x ∈ [y1, y0],

−|y0, w1|−1(λ0I0 + f0|w2, w1|) if x ∈ [w1, y0].

(4.19)

The existence of σp
0 is guaranteed by observation 4.2. More precisely, apply observa-

tion 4.2 with P = P0, yl = y1, yr = y0, wl = w2, wr = w1, f = f0 and λ = λ0.
Let λi � 0 and 0 � fi � 1 (i � 1). We denote by σp

i a divergence-free field defined
in Pi that satisfies

|σp
i · e| � λi + I−1

i (fi|wi+2, wi+1| + |yi+1, yi|) and |σp
i · e⊥| � 1 (4.20)

for all x ∈ Pi and

σp
i · n̂ =




|yi+1, wi+2|−1λiIi if x ∈ [yi+1, wi+2],

fi if x ∈ [wi+2, wi+1],

1 if x ∈ [yi+1, yi],

−|yi, wi+1|−1(λiIi + fi|wi+2, wi+1| + |yi+1, yi|) if x ∈ [wi+1, yi].
(4.21)
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The existence of σp
i results from observation 4.1. More precisely, apply observation 4.1

with P = Pi, yl = yi+1, yr = yi, wl = wi+2, wr = wi+1, f = fi and λ = λi.
We introduce the divergence-free field σq

i (i � 0), defined in Qi, which satisfies

|σq
i (x) · e(x)| � I−1

i (|wi, wi+1| − |vi+1, vi+2|) and |σq
i (x) · e(x)⊥| � 1 (4.22)

for all x ∈ Qi and

σq
i (x) · n̂(x) =




1 if x ∈ [vi+1, vi+2],

0 if x ∈ [wi+1, vi+2] ∪ [vi+1, wi],

−|wi, wi+1|−1|vi+1, vi+2| if x ∈ [wi, wi+1].

(4.23)

The existence of σq
i is a consequence of observation 4.3. More precisely, apply obser-

vation 4.3 with Q = Qi, wl = wi+1, wr = wi, vl = vi+2 and vr = vi+1.
We define σs

i (i � 0) in Si as σs
i (x) = σp

i (−x). Note that σs
i is well defined because

Si = −Pi and σs
i is divergence free within Si. Analogously we have σt

i(x) = σq
i (−x)

for all x ∈ Ti (i � 0).
Finally, let 0 � h � 1 and β � max{|x1, y0|/|x1, w0|, |w0, w1|/(|x1, y0| − |x1, w0|)};

we denote by σr
1 a divergence-free field defined in R1 that satisfies

|σr
1(x) · e(x)| � β and |σr

1(x) · e(x)⊥| � 1 (4.24)

for all x ∈ R1, and

σr
1(x) · n̂(x) =




|y0, w1|−1β|w0, x1| if x ∈ [y0, w1],

h if x ∈ [w0, w1],

0 if x ∈ [w0, x1],

−|x1, y0|−1(β|w0, x1| + h|w0, w1|) if x ∈ [x1, y0],

(4.25)

and we denote by σr
2 the divergence-free field defined in R2 given by σr

2(x) = σr
1(−x).

Note that the existence of σr
1 results from observation 4.4. More precisely, apply

observation 4.4 with R = R1, al = x1, ar = y0, bl = w0, br = w1 and β = α.

(d) A family of stress fields

We will now define a family of stress fields that will be used to obtain our inner
bounds. More precisely, for each integer k � 2 we define in Q = [−1, 1]2 a field σ as

σ(x) =




σp
i (x) if x ∈ Pi and 0 � i � k,

σq
i (x) if x ∈ Qi and 0 � i � k − 1,

σs
i (x) if x ∈ Si and 0 � i � k,

σt
i(x) if x ∈ Ti and 0 � i � k − 1,

σr
1(x) if x ∈ R1,

σr
2(x) if x ∈ R2,

0 otherwise,

(4.26)

and we extend the definition of σ to R
2 so that it becomes Q-periodic.
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Elementary calculations show that there is a unique set of parameters λi, fi, h
and β that makes σ divergence free. More precisely, the continuity of the normal
component of σ at [wi, wi+1] (0 � i � k + 1) implies

h = |w0, w1|−1|v1, v2|,

fi = |wi+2, wi+1|−1|vi+3, vi+2| if 0 � i � k − 2,

fk−1 = fk = 0,


 (4.27)

and the continuity of the normal component of σ at [yi, wi+1] (k +1 � i � 0) implies

λk = 0,

λiIi = λi+1Ii+1 + fi+1|wi+3, wi+2| + |yi+2, yi+1| if k − 1 � i � 0,

2aβ = λ0I0 + f0|w2, w1|.


 (4.28)

Given the above choice of the parameters, it can be shown that σ is divergence free
everywhere in R

2. Note that each fi satisfies the constraint 0 � fi � 1. It is also easy
to verify that λi � 0 for all i. In the definition of σp

0 and σr
1 we imposed restrictions

on both β and λ0. In all the examples to be considered in this paper those restrictions
will be satisfied.

(e) Admissibility of the stress fields

For each value of M , we will select an integer k = k(M) so that the stress field σ
defined in equation (4.26) will result admissible and will produce the desired inner
bound. To that end we first obtain the parameters λi, fi, h and β in terms of the
parameters ti. Equations (4.17) and (4.27) imply that

h = (t1 + t2)−1(t1 + t3),

fi = (ti+1 + ti+3)−1(ti+2 + ti+4) if 0 � i � k − 2,

fk−1 = fk = 0.


 (4.29)

Equations (4.16), (4.17), (4.28) and (4.29) and elementary calculations imply

λi(ti+1 − ti+2) =
k∑

j=i+1

(tj + tj+2) +
k∑

j=i+3

(tj + tj+2) if k − 1 � i � 0,

2aβ =
k∑

j=1

(tj + tj+2) +
k∑

j=2

(tj + tj+2)




(4.30)

(we use the standard convention that
∑n

j=m aj = 0 if n < m).
We now obtain a restriction on k that will guarantee admissibility of σ. σ satis-

fies (3.1) within Pi and Si, for 1 � i � k, if the right-hand side of the first equation
in (4.20) is bounded by M . This condition in terms of the parameters ti reduces to

k∑
j=i

tj + tj+2 +
k∑

j=i+2

tj + tj+2 � M(ti+1 − ti+2). (4.31)
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Similarly, σ satisfies (3.1) within P0 and S0 if

k∑
j=1

tj + tj+2 +
k∑

j=2

tj + tj+2 � M(t1 − t2) (4.32)

(see equation (4.18)) and σ satisfies (3.1) within R1 and R2 if

k∑
j=1

tj + tj+2 +
k∑

j=2

tj + tj+2 � M2a. (4.33)

Thus, if k is chosen so that (4.31)–(4.33) are satisfied, σ is admissible. The larger the
k, the larger the average of the stress field σ. Since we want our inner bound to be
as large as possible, once we consider our examples and specify g, we will maximize
k subject to the restrictions (4.31)–(4.33).

(f ) Average of the stress fields

The average of the stress σ introduced in § 4 d can be obtained by applying equa-
tion (3.4) with cut x = −1 and cut y = −1. Simple calculations show that

〈σ〉 = (aβ + 1
2(t1 + t3))(1, 0). (4.34)

(g) Inner bound

Equations (4.30) and (4.34), and the facts that the texture has square symmetry
and that Khom is convex imply

{
τ ∈ R

2 : ‖τ‖1 �
k∑

j=1

(tj + tj+2)
}

⊆ Khom, (4.35)

as long as equations (4.31)–(4.33) are satisfied.

5. Examples

In this section we will use the results of §§ 3 and 4 to obtain inner and outer bounds
of various polycrystals.

(a) Straight grain boundaries

We now consider the case in which the function g (see § 2) is linear and thus is
given by g(t) = b + ρ(t − b), where ρ = (1 − 2a − b)/(1 − b).

(i) Outer bound

We first evaluate the outer bound. Given the function g under consideration, the
sequence (si)i�0 defined in § 3 b is given by

si = b + (s0 − b)ρi. (5.1)
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Thus, we have

M
sn − sn+2

2
+ 2

n∑
i=1

si = 1
2(s0 − b)(1 − ρ)2ρnM + 2nb + 2(s0 − b)ρ

1 − ρn

1 − ρ
. (5.2)

Let n be the smallest integer that satisfies n � − log M/ log ρ. Simple calcula-
tions show that the right-hand side of equation (5.2) is bounded by −1 + E0 −
2b log M/ log ρ, where E0 is a constant that depends on a and b, but it is indepen-
dent of n and M . Thus, from equation (3.11) we obtain

Khom ⊆
{

τ ∈ R
2 : ‖τ‖∞ � − 2b

log ρ
log M + E0

}
. (5.3)

(ii) Inner bound

We now turn to the inner bound. The sequence (ti)i�0 defined in § 2 is given by

ti = b + (1 − b)ρi. (5.4)

Elementary calculations show that the restrictions (4.31) and (4.32) are satisfied if

4b(k − i) + 2b +
(1 − b)
(1 − ρ)

(1 + ρ2)2 � M(1 − b)(1 − ρ)ρi+1 (5.5)

for all 0 � i � k. To select the k that will lead to the inner bound, we need the
following observation.

Observation 5.1 Let a1, a2, L, λ and u be positive constants. Assume u < 1. If

L � (log u)−1(log a1 − log λ − log(− log u) − 1) − a2

a1
, (5.6)

then

a1(L − x) + a2 � λux for all x. (5.7)

Proof . Let f(x) = λux − a1(L − x) − a2. Let x� be the minimizer of f . Then
f ′(x�) = λux� log u + a1 = 0. A simple calculation shows that f(x�) � 0 if (5.6) is
valid. The validity of the observation follows. �

From this observation and simple algebra, it follows that we can choose k �
−log M/ log ρ − C, where C is a constant independent of M and satisfy (5.5) for
all M . We note that with this choice of k and in our regime of interest, M � 1,
equation (4.33) is also satisfied. Thus, equations (4.35) and (5.4) imply{

τ ∈ R
2 : ‖τ‖1 � − 2b

log ρ
log M − D0

}
⊆ Khom, (5.8)

where D0 is a positive constant independent of M .
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(b) Curved grain boundaries

Let 0 < r. We now study the case in which

ti = b +
η

ir
with η = (1 − 2a − b), (5.9)

for i � 1, where (ti)i�0 is the sequence defined in § 2. Recall that the function g is
determined by the facts that g(ti) = ti+1 and g is linear within (ti+1, ti). It can be
shown that g satisfies the restrictions discussed in § 2, i.e. 0 < g′(t) < 1 for all t
where g′ is defined.

(i) Outer bound

First we observe that si = (ti+1 + ti)/2 for i � 0 (the sequence (si)i�0 was defined
in § 3 b). It can thus be shown that

M
sn − sn+2

2
+ 1 + 2

n∑
i=1

si =
ηr

nr+1 M + 2nb + O

(
hn +

M

nr+2

)
, (5.10)

where

hn =




1 if r > 1,

log(n) if r = 1,

n1−r if r < 1.

(5.11)

Minimizing the right-hand side of equation (5.10) with respect to n leads us to
choose a value of n that satisfies 2b(n + δ)r+2 = r(r + 1)ηM for some δ that satisfies
|δ| � 1/2. Thus, equations (5.10) and (3.11) imply

Khom ⊆
{

τ ∈ R
2 : ‖τ‖∞ � 2b

(2 + r)
(1 + r)

(
(1 + r)rη

2b
M

)1/(2+r)

+ ErAM

}
, (5.12)

where

AM =




1 if r > 1,

log(M) if r = 1,

M (1−r)/(2+r) if r < 1,

(5.13)

and Er is a constant independent of M .

(ii) Inner bound

We now turn to the evaluation of the inner bound. It can be shown that the
restrictions (4.31) and (4.32) are satisfied for i � 1 if

2b + k−r2η � (k + 2)−(r+1)ηrM, (5.14)

4b + (k − 1)−r4η � (k + 1)−(r+1)ηrM, (5.15)

4(k − i)b + 4ηhk � (i + 2)−(r+1)ηrM, (5.16)
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where

hk =




(1 − r)−1k1−r if r < 1,

1 + log k if r = 1,

r/(r − 1) if r > 1.

(5.17)

To choose the value of k that will give us our inner bound we need the following
observation, whose proof is simple.

Observation 5.2 Let c, d and λ be positive constants. Assume that c2λ+1 � dλ.
Then

max
{

η : η − cx � d

(x + 2)λ
for all x � 0

}
= c

λ + 1
λ

(
λd

c

)1/(λ+1)

− 2c. (5.18)

With the help of observation 5.2, it can be shown that the equations (5.14)–(5.16)
are satisfied if we set

k =
r + 2
r + 1

(
r(1 + r)ηM

4b

)1/(2+r)

− CAM , (5.19)

where C is bounded by a constant independent of M and AM is given by (5.13)
Moreover, the restriction (4.33) is also satisfied in our regime of interest (i.e. M � 1).
This choice of k equations (4.35) and (5.9), the square symmetry of the texture and
the convexity of Khom leads to the inner bound{

τ ∈ R
2 : ‖τ‖1 � 2b

(2 + r)
(1 + r)

(
(1 + r)rη

4b
M

)1/(2+r)

− DrAM

}
⊆ Khom, (5.20)

where Dr is a constant independent of M .

References

Bhattacharya, K., Kohn, R. V. & Kozlov, S. 1999 Some examples of nonlinear homogenization
involving nearly degenerate energies. Proc. R. Soc. Lond. A455, 567–583.

Bishop, J. & Hill, R. 1951 A theory for the plastic distortion of a polycrystalline aggregate under
combined stresses. Phil. Mag. 42, 414–427.

Bolton, W. 1996 Materials and their uses. Oxford: Butterworth-Heinemann.
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