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Abstract

We study the behavior of crystals that undergo martensitic transformations. On cooling, the
high-temperature phase (austenite) transforms to the martensite phase changing its crystalline
symmetry. The lower crystalline symmetry of the martensite gives rise to several variants of
martensite. Each variant has an associated transformation strain. These variants accommodate
themselves (according to the boundary conditions) forming a microstructure that minimizes the
elastic energy. This minimum value of the energy is called the e�ective energy. We assume that
all the material is in the martensite phase (i.e. the material is at low temperatures). We show that,
assuming the geometrically linear approximation, the maximum of the e&ective energy restricted
to applied strains in the convex hull of the transformation strains is attained by an applied
strain that is a convex combination of only two transformation strains. We derive a recurrence
relation to compute the energy corresponding to laminated microstructures of arbitrary rank,
under the assumption that the variants of martensite are linearly elastic and their elastic moduli
are isotropic. We use this recurrence relation to develop an algorithm that minimizes the energy
over microstructures that belong to the class of rank-r laminates. We apply our methods to the
case in which the transformation is cubic to monoclinic (corresponding to TiNi). We conclude
with some comments on the possible implications of our calculations on the behavior of this
shape-memory alloy. c© 2001 Elsevier Science Ltd. All rights reserved.

Keywords: A. Microstructures; A. Phase transformation; B. Layered material; C. Numerical
algorithms; C. Optimization

1. Introduction

In this paper we study the behavior of single crystals that undergo martensitic
transformations. These transformations are stress or temperature induced solid-to-solid
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phase transitions. On cooling, the high-temperature phase (austenite) transforms to the
martensite phase changing its crystalline symmetry. The lower crystalline symmetry of
the martensite gives rise to several variants. Each variant has an associated stress-free
or transformation strain. The mathematical model adopted in this paper assumes that
the variants accommodate themselves forming a microstructure that minimizes the
elastic energy. This minimum value of the energy is usually called the e�ective or
relaxed energy.
Given homogeneous boundary conditions, the problem of computing the e&ective en-

ergy and the optimal microstructures has been extensively studied. In the presence of
only two stress-free strains and when the corresponding phases (variants in our context)
are linearly elastic with the same elastic moduli, this problem has been solved assuming
the geometrically linear approximation. In particular, it has been shown that optimal
microstructures are not unique, there always exist optimal microstructures among the
class of layered mixtures (or laminates), and formulae for the e&ective energy were
given (see Khachaturyan, 1966; Kohn, 1991; Pipkin, 1991; Lurie and Cherkaev, 1988).
Another case in which the e&ective energy has been successfully computed (also as-
suming the geometrically linear approximation) is when the variants are linearly elastic
with the same elastic moduli and the transformation strains are pairwise compatible.
More precisely, it has been shown that, under these conditions, the e&ective energy is
the convexi3cation of the minimum of the microscopic energies of each variant (see
Bhattacharya, 1993). Although there has also been substantial progress in the more
general case in which more than two variants are involved but they are not pairwise
compatible (see Smyshlyaev and Willis, 1999; Firoozye and Kohn, 1993), no closed
formula or method for the computation of the e&ective energy has been obtained. We
should also mention that much progress has also been accomplished when the geomet-
rically linear approximation is not assumed (see for example Ball and James, 1987;
Bhattacharya et al., 1994) and that the list of references given here is by no means
complete.
In this paper we assume the geometrically linear approximation, that all the material

is in its martensite phase (i.e. the material is at low temperatures), that the variants
are linearly elastic and that their elastic moduli are isotropic. This mathematical model
has been widely used in the literature and it is reviewed in Section 2.
In Section 3 we obtain our Frst result, namely, we show that the maximum of the

e&ective energy restricted to applied strains in the convex hull of the transformation
strains is attained by an applied strain that is a convex combination of only two
transformation strains. This result is also valid if the elastic moduli of the variants are
not isotropic. In that same section, we also bound the di&erence between the e&ective
energy and its convexiFcation for any applied strain.
In Section 4 we make use of the fact that the variants have the same density to

simplify the existing formulae (Khachaturyan, 1966; Kohn, 1991; Pipkin, 1991) for
the energy corresponding to rank-one laminates, and to derive a recurrence relation to
compute the energy associated with laminates of higher rank. These formulae allow
us to develop a global minimization algorithm that computes optimal rank-r lami-
nated microstructures and the corresponding energies. This algorithm is presented in
Section 5.
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In Section 6 we argue that approximating the e&ective energy by the result of re-
stricting the minimization of the energy to microstructures in the class of low-rank
laminates works best when the applied strain is a convex combination of only two
transformation strains. Thus, the results of Section 3 complement nicely with the nu-
merical method of Section 5. We can compute an upper bound for the e&ective energy
restricted to applied strains that are a convex combination of two transformation strains
with our numerical method, and we can use this computation and the results of Section
3 to obtain an upper bound for the e&ective energy for any applied strain. In Section
6 we apply our methods to the case in which the austenite phase has cubic symmetry
and martensite phase has monoclinic symmetry (with the transformation strains corre-
sponding to TiNi). We conclude with some comments on the possible implications of
our calculations on the behavior of this shape memory alloy.
One of the motivations for the present study lies in a recently introduced numerical

method for the simulation of martensitic transformations in polycrystals (see Bruno
et al., 1996; Bruno and Goldsztein, 1999, 2000). This method makes use of the e&ective
energy for single crystals. While previous implementations were done for materials in
which the e&ective energy for single crystals was known (such as two-dimensional
examples and three-dimensional cubic to orthorhombic transformations), future studies
(such as cubic to monoclinic transformations) will make use of the results presented
here. This paper can also be regarded as a contribution in the characterization of the
set of strains that can be attained with small energies. The relevance of this set lies
in its critical role in some models of shape-memory materials (see Bhattacharya and
Kohn, 1996, 1997; Shu and Bhattacharya, 1998 for example).

2. The mathematical model

In this section we describe the mathematical model that we adopt in this paper. Since
this model is well established and has been extensively used in the literature to study
martensitic phase transitions, we will keep our description brief.
We consider a material that, on cooling, transforms from the austenite phase to the

martensite phase changing its crystalline symmetry. Due to this change in the relative
distance of the atoms, the stress-free strains of both phases are di&erent from each
other. For convenience, we will choose our coordinate system so that the stress-free
strain of the austenite is 0. The lower crystalline symmetry of the martensite gives rise
to several stress-free strains (usually called transformation strains). Each transformation
strain is associated with a variant of martensite. The transformation strain associated
with the ith variant will be denoted by �T (i). The number of variants N depends on
the crystalline symmetry of the material. More precisely, for any pair of transformation
strains �T (i) and �T ( j), there is at least one rotation R, among the rotations that form
the group symmetries associated with the atomic lattice of the austenite, such that
�T (i) = R�T ( j)R−1.
We assume that all the material is in the martensite phase, that the variants of

martensite are linearly elastic and that their elastic moduli are isotropic. Thus, the
elastic moduli of all the variants are equal (they will be denoted by C) and they are
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determined by the Poison ratio 	 and the shear modulus 
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The energy density W =W (�; �T ) =W (�(x); �T (x)) at a point x is given by

W =
1
2
(�− �T )C(�− �T ) =

1
2
Cijk‘(�ij − �Tij)(�k‘ − �Tk‘); (3)

where �T = �T (x) = �T (m) if the material is in the mth variant at the position x. The
displacement u satisFes the equilibrium equations

�ij; j = 0; (4)

where � denotes the stress

�ij = Cijk‘(�k‘ − �Tk‘): (5)

If the domain of the material � (we assume that the interior of � is not empty) is
subject to homogeneous Dirichlet boundary conditions

ui(x) = �aijxj x ∈ @� (6)

(�a is a constant tensor) we assume that the material attempts to form a microstructure
that minimizes the energy. This inFmum value of the energy is usually called the
e&ective, macroscopic or relaxed energy

E(�a) = inf
�T

1
|�|

∫
�
W (�(x); �T (x)) dx: (7)

The inFmum in this last equation is taken over all possible microstructures (i.e. �T (x) ∈
{�T (1); �T (2); : : : ; �T (N )}, the strain �(x) is given by Eq. (2) and displacement u(x) satisFes
the boundary conditions (6) and the equilibrium equations (4)). It is known that the
e&ective energy E depends only on the applied strain �a and not on the domain �. We
said that the material attempts to minimize its energy because in general minimizers
of Eq. (7) do not exist. Thus, sequences or families of microstructures for which their
associated energies have a limit are usually considered. When this limiting value is the
e&ective energy, the associated family of microstructures is usually called a minimizing
sequence. For future reference, we remind the reader that the e&ective energy E is
quasiconvex (see Bhattacharya and Kohn, 1997 for example) and thus, it satisFes

E(�a) = inf
{

1
|�|

∫
�
E(�(x)) dx: u is continuous and satisFes (6)

}
; (8)

where � is given by Eq. (2) (see Dacorogna, 1989 for example).
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3. Upper bound for the e�ective energy

In this section we will prove the following proposition:

Proposition 1. The maximum of the e�ective energy restricted to applied strains in
the convex hull of the transformation strains is attained by an applied strain that is
a convex combination of only two transformation strains.

We will also bound the di&erence between the e&ective energy and its convexiFcation
for any applied strain.
We stress here that the validity of the results of this section relies on the fact

that the transformation strains have the same hydrostatic component. We mention that
Proposition 1 is also valid if the elastic moduli of the variants are not isotropic and
that this proposition can be regarded as a generalization of the analysis of Bhattacharya
(1993) to show that the e&ective energy restricted to applied strains in the convex hull
of the transformation strains is 0 if the transformation strains are pairwise compatible.

3.1. Compatible strains and laminates

The analysis of this section requires that we Frst review the notion of compatible
strains and laminated microstructures (see for example Ball and James, 1987; Bhat-
tacharya, 1993 or Wechsler et al., 1953). Two constant linear strains �(�) and �(�) are
compatible if there is a displacement u whose associated linear strain � is of the form

�(x) =

{
�(�) if x ∈ V;

�(�) if x ∈ R3 − V;
(9)

where V is neither empty nor equal to R3.
Let us denote by y1 ≤ y2 ≤ y3 the eigenvalues of �(�) − �(�). It is well known that

�(�) and �(�) are compatible if and only if y2=0. If in addition �(�) �= �(�), the boundary
of V is the union of parallel planes whose normal n̂ depends on the strains �(�) and
�(�). In particular, let us choose the set V to be the union of parallel layers of the
same thickness with the property that the distances between two neighboring layers are
equal. More precisely, for any 0 ≤ � ≤ 1, and any 
¿ 0, let us deFne

V = V (
) = V (�; 
) =

{
x:

3∑
i=1

xin̂i ∈
⋃
k∈Z

[k
; (k + �)
]

}
: (10)

Assume that � is Fxed. We now have a family of displacements u parameterized by

, u = u(x; 
) whose linear strains are given by Eqs. (9)–(10). To avoid arbitrary
translations and inFnitesimal rotations, we require that u satisFes

ui(x) = ui(x; 
) = �(�)ij xj if
3∑

i=1

xin̂i ∈ [0; �
]: (11)
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The microstructure described above is usually called laminate. Note that, for any x,
we have

lim

→0

ui(x; 
) = ��(�)ij xj + (1− �)�(�)ij xj: (12)

Thus, we say that ��(�) + (1− �)�(�) is the macroscopic strain of the laminate and that
�(�) and �(�) are its microscopic strains.

3.2. Proof of Proposition 1

The proof of Proposition 1 results from the following observations:

Observation 1. Let �(�) and �(�) be two constant strains. Assume that both strains
have the same hydrostatic component (i.e. both matrices have the same trace tr(�(�))=
tr(�(�))). Then, �(�) and �(�) are compatible if and only if the determinant of their
di�erence is 0.

This observation follows from the fact that the sum of the eigenvalues of �(�) − �(�)

is equal to 0 (because the trace of �(�) − �(�) is 0) and the fact that two strains are
compatible if and only if the middle eigenvalue of their di&erence is 0.

Observation 2. Let S be a linear subspace of the space of 3× 3 real matrices. If the
dimension of S is greater than 1, there exists a matrix M ∈ S di�erent from 0 such
that its determinant is 0.

To prove this observation, let M1 and M2 be two linearly independent matrices that
belong to S. If the determinant of any of these matrices is 0 there is nothing to prove.
On the other hand, if the determinants of both matrices are di&erent from 0, consider
the function

p(x) = det(xM1 +M2); (13)

where x is a real number and det(A) denotes the determinant of the matrix A. Since
the matrices Mi are 3 × 3 (and real) and det(M1) �= 0, p(x) is a real polynomial of
degree 3. Thus, it has a real root x0. Since M1 and M2 are linearly independent, we
have that M = x0M1 +M2 is di&erent from 0, it belongs to S, and its determinant is 0,
which proves observation 2.

Observation 3. Let �(�) and �(�) be two compatible constant strains. Then, for any
� ∈ [0; 1] the following holds:

E(��(�) + (1− �)�(�)) ≤ �E(�(�)) + (1− �)E(�(�)): (14)

This is a well-known observation. It can be proven as follows. Let u? denote the
family of displacements corresponding to the laminate whose microscopic strains are
�(�) and �(�) and the volume fraction occupied by �(�) is � (see Eqs. (9)–(11)). This
family of displacements is parameterized by the thickness of the layers 
. Let �? be
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the associated family of strains (i.e. �? is given by Eqs. (9)–(10)). Let �a = ��(�) +
(1− �)�(�). Given Eq. (12), the boundary conditions (6) are satisFed in the thin layer
limit 
 → 0. Thus, from Eq. (8) we conclude

E(��(�) + (1− �)�(�)) ≤ lim

→0

1
|�|

∫
�
E(�?) dx = �E(�(�)) + (1− �)E(�(�)):

Observation 4. Suppose that the applied strain �a is a convex combination of k
transformation strains �T (1); �T (2); : : : ; �T (k). Then

E(�a) ≤ max
0≤�≤1

max
1≤i¡j≤k

E(��T (i) + (1− �)�T ( j)): (15)

To prove this observation we proceed by induction on k. First note that we can
assume that �a is not a convex combination of k − 1 of these k transformation strains.
If k is equal to 1 or 2, the inequality (15) is trivially true. Now, let k be greater than
2. Consider the linear subspace S, generated by {�T (1) − �a ; �T (2) − �a ; : : : ; �T (k) − �a}.
Since �a cannot be written as a convex combination of 2 of these transformation strains,
we have that the dimension of S is greater than 1. Thus, from observation 2, we can
select � ∈ S such that its determinant is 0, det(�) = 0. Consider the semi-line �a + y�
with y ≥ 0. It is easy to see that there exists a strain �(�) in this semi-line that is a
convex combination of k − 1 of these transformation strains. Analogously, let �(�) be
a strain of the form of �a + y�, y ≤ 0, that is a convex combination of k − 1 of
these transformation strains. Since det(�) = 0, we have det(�(�) − �(�)) = 0. Given that
all the transformation strains have the same hydrostatic component, we have that �(�)

and �(�) also have the same hydrostatic component. Thus, �(�) and �(�) are compatible.
Now note that �a is a convex combination of �(�) and �(�). Thus, from observation 3
it follows that:

E(�a) ≤ max{E(�(�)); E(�(�))}: (16)

Finally, since both �(�) and �(�) are convex combinations of k−1 transformation strains,
we can apply our inductive hypothesis to conclude the proof of this observation.
Obviously, this last observation implies Proposition 1 (just take k = N ).

3.3. Applied strains outside the convex hull of the transformation strains

We now turn to the derivation of our upper bound for the e&ective energy valid for
applied strains �a outside the convex hull of the transformation strains. We Frst note
that (under the present conditions) the convexiFcation of the e&ective energy is given
by

E(c)(�a) = min
�∈H

1
2
(�a − �)C(�a − �); (17)

where H denotes the convex hull of the transformation strains

H =

{
�: �=

N∑
i=1

�i�T (i) where �i ≥ 0 and
N∑
i=1

�i = 1

}
:
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Let �c be the minimizer of Eq. (17). For any arbitrary Feld of transformation strains
�T = �T (x), we certainly have

1
2
(�a−�T )C(�a−�T )=E(c)(�a)+(�a−�c)C(�c−�T )+

1
2
(�c−�T )C(�c−�T ): (18)

Let T be a set of transformation strains T = {�T (i1); �T (i2); : : : ; �T (ik )} such that �c is in
the convex hull of T , but �c is not a convex combination of k−1 elements of T . Since
�c is the minimizer of Eq. (17), we have that for any transformation strain �T (i‘) in T ,

(�a − �c)C(�c − �T (i‘)) = 0: (19)

Let us now denote by E(s)(�a ; T ) the e&ective energy associated with the material that
can only transform to variants whose associated transformation strains are in T . In
other words, E(s)(�a ; T ) is the result of restricting the minimization (7) to Felds of
transformation strains �T (x) that satisfy �T (x) ∈ T for all x. Given these remarks and
Eqs. (7), (18) and (19), we obtain

E(�a) ≤ E(c)(�a) + E(s)(�c; T ):

On the other hand, the observation 4 implies

E(s)(�c; T ) ≤ max{E(s)(��T (i) + (1− �)�T ( j); T ): �T (i); �T ( j) ∈ T and 0 ≤ � ≤ 1}:
We now note that, for any �, E(s)(�; T1) ≤ E(s)(�; T2) whenever T2 ⊆T1. Thus, if we
denote by Tij the set of the two transformation strains �T (i) and �T ( j) (Tij={�T (i); �T ( j)}),
it follows that:

E(s)(��T (i) + (1− �)�T ( j); T ) ≤ E(s)(��T (i) + (1− �)�T ( j); Tij)

for any 0 ≤ � ≤ 1 and any pair of transformation strains �T (i) and �T ( j) that belong to
T . From these last three equations, it immediately follows:

E(�a) ≤ E(c)(�a) + max
1≤i¡j≤N

{E(s)(��T (i) + (1− �)�T ( j); Tij): 0 ≤ � ≤ 1}:

Finally, from the analysis of the next section, it can be easily inferred that the right-hand
side is maximized at �= 1

2 and that the following equation is valid:

E(�a) ≤ E(c)(�a) +
(1 + 	)

4

 max

1≤i¡j≤N
{min{z2: z eigenvalue of �T (i) − �T ( j)}}(20)

which gives us a bound on the di&erence between the e&ective energy and its convex-
iFcation valid for any applied strain.

4. Laminates and their associated energies

In this section we review the notion of laminates in more detail and we simplify
the existing formulae (Khachaturyan, 1966; Kohn, 1991; Pipkin, 1991) for the energy
corresponding to this class of microstructures. This analysis is not new (see Khachatu-
ryan, 1966; Kohn, 1991; Pipkin, 1991), but since in our context all the transformation
strains have the same hydrostatic component, we can go a step further than previous
work. We will Frst consider rank-one laminates and then laminates of higher rank.
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4.1. Rank-one laminates

Consider the following family of microstructures:

�T (x) = �T (x; 
) = �T (x; �; 
) =

{
�T (�) if x ∈ V;

�T (�) otherwise;
(21)

where �T (�) and �T (�) are a pair of transformation strains, the set V =V (�; 
; n̂) is given
by Eq. (10) and n̂ is a given unit vector.
Let u= u(x) = u(x; 
) be the family of displacements given by Eqs. (9)–(11). The

strains �� and �� are completely determined (as functions of �T (�), �T (�), n̂, � and �a)
once we require that (for each 
) u satisFes the equilibrium equations (4) and

�a = ��� + (1− �)��: (22)

More precisely, the strains �� and �� are found as follows: The continuity of the
displacement u imposes a compatibility condition, namely, there exist a vector b such
that

�� = �a + (1− �)(b⊗ n̂+ n̂⊗ b) (23)

and

�� = �a − �(b⊗ n̂+ n̂⊗ b): (24)

In these last two equations, we have used the notation x ⊗ y (where x and y are
vectors) to denote the matrix whose components are (x ⊗ y)ij = xiyj. The equilibrium
equations (4) imply

[C(b⊗ n̂+ n̂⊗ b)]n̂= [C(�T (�) − �T (�))]n̂: (25)

This last equation determines b as a function of n̂ and the transformation strains �T (�)

and �T (�) (this calculation is done in the appendix).
Note that, for every x, Eq. (12) is valid. This fact and Eq. (22) imply that the bound-

ary conditions (6) are satisFed in the thin layer limit 
 → 0. Thus, the limiting value
of the energies corresponding to the family of microstructures (21) can be computed
by assuming that the corresponding displacements are given by u= u(x) = u(x; 
), the
family of displacements described above. This can be easily done

lim

→0

1
|�|

∫
�
W (�(x); �T (x)) dx = �W (��; �T (�)) + (1− �)W (��; �T (�)): (26)

So far no restriction has been made on the normal to the layers n̂. But according to our
assumptions, low-energy microstructures are preferred over high-energy ones. Thus, we
will restrict our attention to orientations that minimize the energy. In other words, we
will assume n̂ is a minimizer of Eq. (26).
The family of microstructures we have described above, which we denote by L, is

called a rank-one laminate. The energy associated with this laminate (i.e. the minimum
of Eq. (26) with respect to the layer orientation n̂), which we denote by E(‘)(�a ; L), is
computed in the appendix. There we obtain

E(‘)(�a ; L) =
1
2
(�a − �T (L))C(�a − �T (L)) + P(L): (27)
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In this last equation we have introduced the following notation:

�T (L) = ��T (�) + (1− �)�T (�) (28)

and

P(L) = 
�(1− �)(1 + 	)min{z2: z eigenvalue of �T (�) − �T (�)}: (29)

We say that �T (L) is the macroscopic transformation strain of the laminate L and
that �T (�) and �T (�) are its microscopic transformation strains. We also say that P(L) is
the penalty energy or the cost to form the laminate L. This energy P(L) is due to the
incompatibility of the microscopic transformation strains of the laminate. In the rest
of this paper, we will identify any rank-one laminate L with a single e�ective phase
whose properties are determined by its macroscopic transformation strain �T (L) and its
cost of formation P(L).
Before considering higher rank laminates we make a few remarks. There is more

than one optimal orientation (see the appendix). Nevertheless, since we are interested
only in the energy, we will make reference to the optimal orientations as if there were
only one. The optimal orientation n̂ does not depend on the applied strain �a. For
convenience, we will identify the di&erent transformation strains �T (k) with rank-zero
laminates. Thus, if L is a rank-zero laminate, there exists k (1 ≤ k ≤ N ) such that
�T (L) = �T (k) and P(L) = 0.

4.2. Rank-r laminates

We will identify any rank-r laminate L with a single e&ective phase. Roughly speak-
ing, L is a laminate whose material layers are two lower rank laminates ‘1 and ‘2 (the
rank of one of these laminates is r− 1). More precisely, if � is the volume fraction of
‘1, we can give the following description of rank-r laminates (we only consider rank-r
laminates whose layer orientation is optimal):
A rank-r laminate L can be identiFed with a single e&ective phase whose properties

are determined by its macroscopic transformation strain �T (L) and its cost of formation
P(L). The macroscopic transformation strain �T (L) is given by

�T (L) = ��T (‘1) + (1− �)�T (‘2); (30)

where �T (‘1) and �T (‘2) are the macroscopic transformation strains of the lower rank
laminates ‘1 and ‘2; respectively (we also say that �T (‘1) and �T (‘2) are the microscopic
transformation strains of L). The penalty energy P(L) is given by

P(L) = 
�(1− �)(1 + 	)min{z2: z eigenvalue of �T (‘1) − �T (‘2)}
+ �P(‘1) + (1− �)P(‘2): (31)

Given the notation introduced above, and following the analysis of rank-one lami-
nates, it can be easily shown that Eq. (27) is valid for laminates of arbitrary rank.
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5. Optimal laminates and their associated energies

In this section we develop a global minimization algorithm that computes optimal
rank-r laminated microstructures and the corresponding energies. More precisely, we
will describe a method to evaluate Er(�a), where

Er(�a) = min{E(‘)(�a ; L): rank of L ≤ r} (32)

and to Fnd the optimal laminates (i.e. the minimizers of Eq. (32)).
The limiting value of Er(�a) as r → ∞, which we denote by E∞(�a), is the rank-one

convexiFcation of ’(�a)=min1≤i≤NW (�a ; �T (i)) (see Eq. (3)). On the other hand, E(�a)
is the quasiconvexiFcation of ’(�a). Although the example given in LSverMak (1990)
shows that rank-one convexity does not imply quasiconvexity, it is not known in our
particular context if E∞(�a) = E(�a).
The numerical minimization of energies over laminated microstructures has been

previously considered in Ortiz and Repetto (1999), Ortiz et al. (2000) and Dolzmann
(1999). The method developed in Ortiz and Repetto (1999), and Ortiz et al. (2000)
was used in their theory of dislocation structures. A particular feature of this method is
the use of an optimal rank-r laminate as an initial guess to Fnd an optimal rank-r +1
laminate. In our context, this approach could run the risk of Fnding a local minimum
instead of the global minimum. On the other hand, the method introduced in Dolzmann
(1999) computes the rank-one convexiFcation of any given function. This method is
very general but as a consequence, it is prohibitively slow and it requires too much
memory if used for our problem in hand. Here we will make use of the fact that we
have at our disposal the formulae (27), (30) and (31) to develop an algorithm that
always Fnds the global minimum, it is reasonably fast and does not present mem-
ory problems. In the example presented in Section 6, our method cannot go beyond
rank-two laminates. The reason for this limitation is that in that example (in which
we have 12 transformation strains) there are too many rank-three laminates and our
algorithm explores many of them to guarantee that the minimum found is global. We
now proceed with the description of our method.

5.1. Representation of laminates by trees

Our Frst step is to represent laminates by binary trees. For our purposes, a binary
tree can be described as a set of nodes and edges that satisfy the following: Each node
is either single or a parent. Each parent has exactly two children, its left child and its
right child (these children are also nodes). Each single does not have any children.
Every node except one (called root) has exactly one parent. The root does not have
any parents. Nodes are connected by edges. Each node is connected only to its children
(if the node is a parent) and to its parent (if the node is not the root). Fig. 1 shows
an example of a binary tree.
It is now convenient to introduce the following notation: If a node n is a parent,

we will denote by left(n) its left child and by right(n) its right child. The parent of
any node n that is not the root will be denoted by parent(n). The root of a tree G
will be denoted by root(G). The set of singles of a tree G will be denoted by S(G)
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Fig. 1. The left Fgure shows an example of a binary tree. The black nodes are single and the white nodes
are parents. The height of this tree is 2. The right Fgure shows Des(n), the tree formed by the node n and
its descendents.

Fig. 2. Illustration of a laminate (right Fgure) and its associated tree (left Fgure). The transformation strains
of the single nodes, as well as the spatial distribution of transformation strains in the laminate are represented
by colors. Same colors represent the same transformation strain.

and the set of parents by P(G). The height of a tree G, which we will be denoted by
Height(G), is the number of elements −1 of the largest sequence of nodes {ni} with
the property that parent(ni)=ni−1. Note that any node n, its descendents and the edges
connecting them form a tree. We will denote this tree by Des(n) (see Fig. 1).
Each node n will have an associated strain that will be refered to as the transforma-

tion strain of the node n and it will be denoted by �T (n). In addition, each node p that
is a parent will have an associated scalar variable �(p) ∈ [0; 1]. We now proceed with
the description of the representation of laminates by binary trees by induction on the
rank of the laminate. If L0 is a rank-zero laminate, its corresponding tree G(L0) consists
of a single node n whose transformation strain is equal to the transformation strain of
L0; �T (n) = �T (L0). Let us now consider a rank-r laminate L, where r ¿ 0. Let ‘1 and
‘2 be the lower rank laminates that form the material layers of L, G(‘1) and G(‘2)
their corresponding trees, and � the volume fraction of ‘1. The tree G that represents
L is the tree that satisFes Des(left(root(G)))=G(‘1) and Des(right(root(G)))=G(‘2).
The transformation strain of root(G) is equal to the macroscopic transformation strain
of the laminate L, �T (root(G)) = �T (L), and �(root(G)) is equal to the volume fraction of
‘1, �(root(G)) = �. The transformation strain of any other node n of G (n �= root(G))
is the same transformation strain n has associated as a node of G(‘1) or G(‘2), and
analogously, the value of �(p), for any parent p (that is not the root), does not change
if we consider p to be a node of G instead of being a node of G(‘1) or G(‘2). In
the rest of this paper we will denote by G(L) the tree that represents the laminate L.
In Fig. 2 we illustrate this correspondence between laminates and binary trees with an
example. Note that the rank of a laminate is equal to the height of its corresponding
tree.
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Fig. 3. The black node of the tree G (left Fgure) is lp(G). The right tree R(G) is the result of removing
the children of lp(G) from the tree G.

5.2. Recurrence relation to evaluate the energy

We will now use the tree representation of laminates to derive a recurrence relation
to evaluate the energy. To that end, we Frst need to deFne a few operations on binary
trees. Let G be a binary tree (as described above). We will denote by lp(G) the most
left parent that is not a grandparent. In other words, lp(G) is the parent that satisFes the
following property: the children of lp(G) are single and if n is another parent whose
children are single, there exist an ancestor a (of both lp(G) and n) such that lp(G) ∈
Des(left(a)) and n ∈ Des(right(a)). We will denote by R(G) the tree that results from
removing the children of lp(G) (and the corresponding edges) from the tree G. In
Fig. 3 we illustrate these deFnitions with an example.
We next introduce a number of tensors. Let � be a constant linear strain that is a

linear combination of the transformation strains

�=
N∑
i=1

zi�T (i): (33)

Let p2; p1 and p0 be the coeNcients of its characteristic polynomial

det(�I − �) = �3 + p2�2 + p1� + p0; (34)

where I denotes the identity matrix and det(M) denotes the determinant of the matrix
M . We deFne fijk and gij (1 ≤ i; j; k ≤ N ) as the symmetric tensors that satisfy

p0 = fijkzizjzk and p1 = gijzizj for all � of the form (33):

We also introduce the tensors aij and bi

aij =
1
2
�T (i)C�T ( j) and bi =−1

2
�T (i)C�a ; 1 ≤ i; j ≤ N;

where �a is the applied strain.
We are now ready to describe a recurrence relation to evaluate the energy. Let L be

the laminate under consideration and G = G(L) its corresponding tree. Let Np be the
number of parents of the tree G. We deFne the sequence of trees

G0 = G; Gq+1 = R(Gq) 0 ≤ q ≤ Np − 1:

For convenience, we introduce the functions

h1(a; b; x) = ax + b(1− x); h2(a; b; c; x) = ax2 + 2bx(1− x) + c(1− x)2

and h3(a; b; c; b; x) = ax3 + 3bx2(1− x) + 3cx(1− x)2 + d(1− x)3: (35)
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We deFne

a(0)st = aij; b(0)s = bi; f(0)
stu = fijk and g(0)st = gij ∀s; t; u ∈ S(G0);

where i = i(s); j = j(t) and k = k(u) are the integers that satisfy

�T (s) = �T (i); �T (t) = �T ( j) and �T (u) = �T (k):

To simplify the notation in the formulae that will follow, let

p= p(q) = lp(Gq); ‘ = left(p) and r = right(p): (36)

We now deFne the family of tensors f(q+1) (0 ≤ q ≤ Np − 1)

f(q+1)
ppp = h3(f

(q)
lll; f

(q)
llr ; f

(q)
lrr ; f

(q)
rrr ; �(p)); f(q+1)

pps = h2(f
(q)
lls; f

(q)
lrs; f

(q)
rrs ; �(p));

f(q+1)
pst = h1(f

(q)
lst ; f

(q)
rst ; �(p)) and f(q+1)

stu = f(q)
stu ∀s; t; u ∈ S(Gq+1)− {p}

and we complete the deFnition of f(q+1) by requiring these tensors to be symmetric,
i.e. f(q+1)

pst = f(q+1)
pts , etc. Similarly, we deFne

g(q+1)
pp = h2(g

(q)
ll ; g

(q)
lr ; g

(q)
rr ; �(p)); g(q+1)

ps = h1(g
(q)
ls ; g

(q)
rs ; �(p)); g(q+1)

st = g(q)st

(the tensors g(q+1) are also symmetric, i.e. g(q+1)
ps = g(q+1)

sp ) and

a(q+1)
pp = h2(a

(q)
ll ; a

(q)
lr ; a

(q)
rr ; �(p)); a(q+1)

ps = h1(a
(q)
‘s ; a

(q)
rs ; �(p)); a(q+1)

st = a(q)st

(we also have a(q+1)
ps = a(q+1)

sp ), ∀s; t ∈ S(Gq+1) − {p}. Let �p be the middle root of
the polynomial

�3 + p1(p)� + p0(p); (37)

(for reasons to be discussed later, all the roots of this polynomial are real) whose
coeNcients p0(p) and p1(p) are given by

p0(p) =
∑

0≤i; j; k≤1

(−1)i+j+kf(q)
c(i)c( j)c(k) and p1(p) =

∑
0≤i; j≤1

(−1)i+jg(q)c(i)c( j); (38)

where c(0) = ‘ and c(1) = r. We can now deFne the tensors b(q+1) as

b(q+1)
p = h1(b

(q)
‘ ; b(q)r ; �(p)) + 


(1 + 	)
2

�(p)(1− �(p))�2
p; b(q+1)

s = b(q)s ;

∀s ∈ S(Gq+1) − {p}. The above formulae allows us to evaluate the energy. More
precisely, we have the following proposition:

Proposition 2. The energy associated with the laminate L is given by

E(‘)(�a ; L) = a(Np)
mm + 2b(Np)

m +
1
2
�aC�a ; where m= root(G)

and Np is the number of parents of the tree G.

The validity of the above formula follows from a series of observations.

Observation 5. a(q)st = 1
2 �

T (s)C�T (t), ∀s; t ∈ S(Gq) (0 ≤ q ≤ Np).
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Observation 6. Let � be a linear combination of the transformation strains associated
with the singles of the tree Gq

�=
∑

s∈S(Gq)

zs�T (s):

The coe;cients p0 and p1 of the characteristic polynomial of � (see Eq. (34)) are
given by

p0 = f(q)
stu zsztzu and p1 = g(q)st zszt :

Observation 7. The eigenvalue of minimum absolute value of �T (‘) − �T (r) is �p the
middle root of the polynomial (37) (see also Eqs. (36) and (38)).

In fact, the polynomial (37) is the characteristic polynomial of �T (‘) − �T (r). Thus,
since �T (‘) − �T (r) is symmetric, all the roots of the polynomial (37) are real.

Observation 8. For any node s ∈ S(Gq) (0 ≤ q ≤ Np) we have:

b(q)s =−1
2
�T (s)C�a +

P(Ls)
2

;

where Ls is the laminate that is represented by Des(s) (s being regarded as a node
of G) and P(Ls) is the cost of formation of Ls (see Eq. (31)).

The proofs of the above observations can be obtained by induction on q. They are
very simple and thus we will omit them. Given these observations, the validity of
Proposition 2 follows immediately.

5.3. Numerical method to minimize the energy over laminates

To evaluate Er(�a) (see Eq. (32)), we will proceed as follows. For a given tree G
that satisFes Height(G) ≤ r, and a given assignment of transformation strains to its
singles, we will minimize the energy with respect to the variables {�(p): p ∈ P(G)}.
We will then minimize over all possible assignments of transformation strains to the
singles and all trees G, under the restriction Height(G) ≤ r. More precisely, introducing
the notation

G(r) = {G tree : Height(Des(left(n))) = Height(Des(n))− 1 and ∀n ∈ P(G)

and Height(G) ≤ r}; (39)

I(G) = {I :S(G)→{1; 2; : : : ; N} :s= left(p)∈S(G) and t = right(p)∈S(G)

for some p ∈ P(G) ⇒ I(s)¡I(t)} (40)

and

L(G; I) = {L laminate : G(L) = G and �T (s) = �T (I(s)) ∀s ∈ S(G)}
we will compute Er(�a) as indicated in the following formula

Er(�a) = min
G∈G(r)

min
I∈I(G)

min
L∈L(G; I)

E(‘)(�a ; L):
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The choice of the sets G and I is to avoid some unnecessary calculations due to the
fact that laminates can be represented by more that one tree.
Note that any laminate L ∈ L(G; I) is determined by the variables {�(p): p ∈

P(G)} once G and I are Fxed. Let Np be the number of parents of the tree G and
let us label these parents in some arbitrary way with integer indexes from 1 to Np,
P(G)={pi: 1 ≤ i ≤ Np}. We denote by � the vector whose components are �i=�(pi)
(1 ≤ i ≤ Np). Thus, the minimization over L(G; I) can be written as

min
�∈[0;1]Np

E(‘)(�a ; �) = min
L∈L(G; I)

E(‘)(�a ; L) where E(‘)(�a ; �) = E(‘)(�a ; L); (41)

(for convenience, we do not explicitly display the dependence of E(‘)(�a ; �) on G and
I). Let �min be a minimizer of the above equation. If one of the components of �min

is equal to 0 or 1, the corresponding laminate can be represented by another tree with
fewer nodes. It is not diNcult to see from formulae of Section 5.2 that E(‘)(�a ; �) is
a continuous function of � but its derivatives might have discontinuities. Thus, any
minimizer of (41) �min whose components are di&erent from 0 or 1, 0¡�min

i ¡ 1,
belongs to the set of critical points : given by

:=

{
�

◦
: inf lim
�→�

◦

@E(‘)

@�i
(�a ; �) ≤ 0 ≤ sup lim

�→�
◦

@E(‘)

@�i
(�a ; �) ∀i

}
:

Consequently, we have

Er(�a) = min
G∈G(r)

min
I∈I(G)

E(G;I)(�a);

where

E(G;I)(�a) = min{E(‘)(�a ; �): � ∈ : ∩ [0; 1]Np}: (42)

In the above formula, we take E(G;I)(�a) =∞ if the set : ∩ [0; 1]Np is empty.
Given prescribed errors of tolerance 
e ¿ 0 and 
� ¿ 0, our algorithm provide us

with a tree G? ∈ G(r), a function I? ∈ I(G), and a vector �? (each component of
�? is given with an error bounded by 
�) that represent an optimal laminate L? (i.e.
a minimizer of Eq. (32)), as well as the value of Er(�a) (with an error bounded by

e). If there exists more than one minimizer, a minor modiFcation on the algorithm
that we will describe would provide us with all the minimizers.
Suppose that we have an upper bound U of Er(�a) and the tree representation,

Gu ; I u and �u, of a laminate whose associated energy is U . For given G and I our
algorithm tells us if E(G;I)(�a)¡U . If this is the case, our algorithm gives us �min, a
minimizer of Eq. (42), it updates the value of the upper bound U to U :=E(G;I)(�a)
and it also updates the laminate whose energy is equal to the upper bound by setting
Gu :=G; I u := I and �u := �min. After all functions I ∈ I(G) and all trees G ∈ G(r) are
considered, we achieve our goal, i.e. Er(�a)=U and an optimal laminate is represented
by G? = Gu, I? = I u and �? = �u.
To locate the minimizers of Eq. (42), our algorithm reFnes the domain [0; 1]Np a

number of times. If a region Q is the result of having reFned [0; 1]Np i times, we say
that its level is i. The set of regions whose level is i is denoted by Q(i)

Q(i) = {Q(i)
j }1≤j≤#(Q(i)):
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The variable lev (which is dynamic), indicates the highest level of the regions being
explored at the time. These regions are denoted by Q(i)

cur(i) (0 ≤ i ≤ lev). Regions with
the same level are disjoint and satisfy⋃

1≤j≤#(Q(i))

Q(i)
j ⊆Q(i−1)

cur(i−1) (1 ≤ i ≤ lev):

To decide whether E(G;I)(�a)¡U , and if this is the case to also evaluate E(G;I)(�a)
and Fnd a minimizer �min, our algorithm follows the next sequence of steps:

Step 1: It sets Q(0)
1 := [0; 1]Np , Q(0) := {Q(0)

1 }, lev := 0 and cur(0) := 1.
Step 1 is the initialization step.
Step 2: While cur(lev)¿ #(Q(lev)) and lev ≥ 0, the algorithm sets cur(lev −

1) := cur(lev−1) + 1 and lev := lev − 1.
Step 2 simply says that after having explored all the sets whose level is lev, the

algorithm moves on to explore the sets whose level is lev − 1 and have not been
previously explored.
Step 3: If lev = −1, the algorithm stops (it moves on to a new pair (G; I)).

Otherwise; it obtains B(u) and B(‘) upper and lower bounds of E(‘)(�a ; �) restricted to
� ∈ Q(lev)

cur(lev)

B(‘) ≤ min{E(‘)(�a ; �): � ∈ Q(lev)
cur(lev)} ≤ max{E(‘)(�a ; �): � ∈ Q(lev)

cur(lev)} ≤ B(u):

The calculation of B(u) and B(‘) and their properties will be discussed later in this
paper.
Step 4: If B(u) ¡U , the algorithm updates the upper bound U by setting of

U :=B(u) and the minimizer �min by setting it equal to the center of Q(lev)
cur(lev).

Step 5: If B(‘) ¿U; the algorithm sets cur(lev) := cur(lev) + 1 and it goes back
to step 2. Otherwise; if B(u) − B(‘) ¡
e and the length of each side of Q(lev)

cur(lev) is
bounded 2
�; the algorithm also sets cur(lev) := cur(lev) + 1 and goes back to step
2.
In step 5 the algorithm decides whether it will continue exploring the set Q(lev)

cur(lev)
(i.e. go to step 6) or not. Later in this paper we will describe a procedure that for
convenience we call ReFne. This procedure takes as input a region Q⊆ [0; 1]Np of the
form Q =

∏
1≤i≤Np

[ai; bi] and gives as output a sequence of disjoint regions included

in Q of the form Q> =
∏

1≤i≤Np
[a(>)i ; b(>)i ] (1 ≤ > ≤ n(Q)) with the property

: ∩ Q⊆
n(Q)⋃
>=1

Q>; b(>)i − a(>)i ≤ 1
2
(bi − ai) ∀i; > and 0 ≤ n(Q) ≤ 2Np :

Step 6: Let {Qi}1≤i≤n(Q) be the output of applying Re3ne to Q = Q(lev)
cur(lev). If

n(Q) = 0, the algorithm sets cur(lev) := cur(lev) + 1. Otherwise; it sets Q(lev+1)
i :=Qi

(1 ≤ i ≤ n(Q)), Q(lev+1) := {Qi}1≤i≤n(Q); cur(lev + 1) := 1 and it updates lev to
lev := lev + 1. In either case; it then goes back to step 2.

If E(G;I)(�a) ≥ U , the condition of step 4 is never satisFed before the algorithm
stops considering the pair (G; I). Otherwise, the value of U is already updated by the
time lev =−1 (see step 3) and �min is a minimizer.
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5.4. The procedure Re3ne

We now turn to the description of the procedure ReFne that our algorithm uses in
step 6. To that end, let Q be a region of the form

Q =
Np∏
i=1

[�(0)i −P�i; �
(0)
i +P�i]:

Given the formulae of Section 5.2, it is easy device and algorithm (that requires O(Np)
operations) to compute B(‘) and B(u), lower and upper bounds of E(‘)(�a ; �) restricted
to � ∈ Q, with the property

0 ≤ min
�∈Q

E(‘)(�a ; �)− B(‘) =
Np∑
i=1

O(P�i)2

and

0 ≤ B(u) −max
�∈Q

E(‘)(�a ; �) =
Np∑
i=1

O(P�i)2:

Analogously, taking derivatives of the formulae of Section 5.2, we can also bound the
second derivatives of E(‘)(�a ; �)

0 ≤ min
�∈Q

@2E(‘)

@�i@�j
(�a ; �)− B(‘)

ij =
Np∑
i=1

O(P�i)2

and

0 ≤ B(u)
ij −max

�∈Q

@2E(‘)

@�i@�j
(�a ; �) =

Np∑
i=1

O(P�i)2:

Let A be the matrix whose components are

aij =
1
2
(B(u)

ij + B(‘)
ij ) (1 ≤ i; j ≤ Np);

and PA the matrix with components

Paij =
1
2
(B(u)

ij − B(‘)
ij ) (1 ≤ i; j ≤ Np):

If A and ∇E(‘)(�a ; �(0)) are deFned (�(0) denotes the vector whose components are
�(0)i ) and A is not singular, any � ∈ : ∩ Q is of the form

� = �(c) + ��(c);

where

�(c) = �(0) − A−1∇E(‘)(�a ; �(0));

and the components of 
�(c) satisfy

|
�(c)i | ≤ P�(c)i = |a(−1)
ij |PajkP�k
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(a(−1)
ij are the components of A−1). Thus, we have

Q ∩ :⊆Q∗;

where

Q∗ = Q ∩
Np∏
i=1

[�(c)i −P�(c)i ; �(c)i +P�(c)i ]:

If A or ∇E(‘)(�a ; �(0)) are not deFned, or A is singular, we simply set Q∗ =Q. Given
the deFnition of Q∗, we have that Q∗ is either empty or of the form

Q∗ =
Np∏
i=1

[�∗i −P�∗i ; �
∗
i +P�∗i ]:

We are now ready to describe the output of the procedure ReFne when its input is
the region Q. If Q∗ is empty, the output of ReFne is n(Q) = 0. Otherwise, let X (k) be
the sets of regions deFned inductively as follows:

X (0) = {Q∗} (43)

and

X (k) =

{
{Q ∩ {�k ≤ �∗k }; Q ∩ {�k ≥ �∗k } : Q ∈ X (k−1)} if 2P�∗k ¿P�k ;

X (k−1); otherwise:
(44)

The output of the procedure ReFne is the set of regions X (Np) and n(Q) = #(X (Np)).

5.5. Remarks on the numerical algorithm

The numerical algorithm described in this section is a global minimization algorithm.
It always Fnds the global minimum. Most of the computational time is spent in the
Frst few levels of reFnement. Once we know that the critical point is inside a set
Q =

∏
[ai; bi], where bi − ai is small enough for all i, the method behaves like a

sequentially quadratic programming algorithm (to minimize the function E(‘)(�a ; �)) or
a Newton–Raphson method (to Fnd the zeros of the gradient of E(‘)(�a ; �)).
If {Qi} is the output of applying ReFne to Q, the algorithm can be sped up by

reordering the set {Qi} in such a way that E(‘)(�a ; �) evaluated at the center of Q1 is
less or equal to E(‘)(�a ; �) evaluated at the center of Qi for any i �= 1. This requires
the evaluation of E(‘)(�a ; �) at the center of Qi (for all 1 ≤ i ≤ n(Q)), but this is
inexpensive. Once Q1 is selected, the recursive formulae of Section 5.2 suggest the
order of the rest of the regions Qi to minimize the number of operations required by
the algorithm.

6. Applications. Cubic to monoclinic transformations

In this section we will apply our methods to a particular example. Namely, we
will assume that the austenite has cubic symmetry and the martensite has monoclinic



918 G.H. Goldsztein / J. Mech. Phys. Solids 49 (2001) 899–925

Fig. 4. Optimal energies corresponding to microstructures in the classes of rank-one and rank-two laminates
for applied strains of the form (47). The solid line corresponds to E1(�a(y)) and the dotted line to E2(�a(y))
(see Eqs. (32) and (47)). When |y| ≥ 1, both curves coincide.

symmetry. More precisely, we have chosen one of the transformation strains (say �T (1))
to be

�T (1) =



0:025 0:06 0:04
0:06 0:025 0:04
0:04 0:04 −0:05


 : (45)

These values are similar to the ones corresponding to the transformation strains in
Ti-50.6Ni (see Knowles and Smith, 1981). The rest of the transformation strains (there
are 12 of them) can be obtained by rotating �T (1) with rotations in the group of
symmetries of the cubic lattice.

6.1. Numerical calculations

We will use the results obtained in our numerical calculations to evaluate our upper
bound. Thus, we are interested in the energy for applied strains that are a convex combi-
nation of two transformation strains. In the case under consideration, the transformation
strains are not pairwise compatible. In fact, any transformation strain is incompatible
with exactly three other transformation strains. For example, the transformation strain
�T (1) given by Eq. (45) and the transformation strain

�T (2) =



−0:05 −0:04 −0:04
−0:04 0:025 0:06
−0:04 0:06 0:025


 (46)

are incompatible. Thus, we consider applied strains of the form

�a = �a(y) = �T (1) +
1 + y
2

(�T (2) − �T (1)): (47)

In our computations we have used the following values for the Poisson ratio and shear
modulus: 	 = 0:25 and 
 = 100 GPa. In Fig. 4 we have plotted the optimal energies
corresponding to microstructures in the classes of rank-one and rank-two laminates for
applied strains of the form (47) (i.e. we have plotted Er(�a(y)) as a function of y for
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r = 1 and 2). As expected, these curves are not convex. They exhibit a double-well
structure.
Let us consider in more detail one of these applied strains, namely

�a0 = �a(0) =
1
2
(�T (1) + �T (2)): (48)

The optimal rank-one laminate L1 corresponding to this applied strain (i.e. E1(�a0) =
E(‘)(�a0; L1)) has as microscopic transformation strains �T (1) and �T (2) with volume frac-
tions 0:5 each. Thus, the macroscopic transformation strain of this laminate �T (L1) (see
Eq. (28)) is equal to the applied strain. All the energy E1(�a0) = 0:01024 GPa is due
to the incompatibility of �T (1) and �T (2). In other words, all this energy is equal to the
penalty energy P(L1) (last term in Eq. (27)).
On the other hand, the optimal rank-two laminate L2 (i.e. E2(�a0) = E(‘)(�a0; L2)) has

as material layers two rank-one laminates ‘1 and ‘2 with the volume fraction of ‘1
being � = 0:498. These rank-one laminates are described as follows. The microscopic
transformation strains of ‘1 are

�T (3) =



−0:05 0:04 0:04
0:04 0:025 0:06
0:04 0:06 0:025


 (49)

and �T (2) (see Eq. (46)) with the volume fraction of �T (3) being �1 = 0:344, and the
microscopic transformation strains of ‘2 are

�T (4) =




0:025 −0:06 −0:04
−0:06 0:025 0:04
−0:04 0:04 −0:05


 (50)

and �T (1) with the volume fraction of �T (4) being �2 = 0:272. Note that P(‘i) = 0,
i.e. the microscopic transformation strains of the laminate ‘i are compatible, for both
i = 1 and 2. Note also that the macroscopic transformation strain of this rank-two
laminate �T (L2) is not equal to �a0 and thus, the Frst term of the right-hand side of
Eq. (27) is not 0. However, it was energetically preferable to Frst mix �T (1) and �T (2)

with other transformation strains (�T (4) and �T (3), respectively) to decrease the penalty
due to incompatibility and then form the rank-two laminate L2. The total energy is
E2(�a0) = E(‘)(�a ; L2) = 0:003655 GPa.
Before we leave this discussion of our numerical computations, we make the fol-

lowing observations. While E1(�a(y)) is even with respect to y, E2(�a(y)) is not. If
we replace �T (1) and �T (2) by any other pair of incompatible transformation strains, we
would obtain the same curves or the reQection of these curves along the vertical axis
y=0. Finally, we mention that the maximum of E1(�a(y)) (for y ∈ [−1; 1]) is attained
at y=0 but the maximum of E2(�a(y)) is attained at y=−0:04. This maximum value
is E2(�a(−0:04)) = 0:003703 GPa.
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6.2. Characteristics of the upper bound

We are now ready to evaluate our upper bound. From our numerical calculations,
we have a bound on the e&ective energy restricted to applied strains that are a convex
combination of two transformation strains

Ui = max
−1≤y≤1

E2(�a(y)) = 0:003703 GPa (51)

and we have the maximum of the energies required to form rank-one laminates (which
is equal to the last term of Eq. (20))

Uo = max
−1≤y≤1

E1(�a(y)) = E1(�a0) = 0:01024 GPa: (52)

Thus, our upper bound reads

E(�a) ≤
{
Ui if �a is in the convex hull of the transformation strains;

Uo + E(c)(�a) otherwise;

(53)

where E(c) is the convexiFcation of the e&ective energy (see Eq. (17)). Note that the
evaluation E(c) requires the solution of a simple quadratic programming problem.
At this point the following question arises. Given an applied strain �a in the convex

hull of the transformation strains, why do we not make use of our numerical method
and compute Er(�a) (the optimal energy among rank-r laminates) to bound the e&ective
energy instead of using our upper bound (Proposition 1)? The answer to this question
is: If our numerical method is able to compute Er(�a) with r large (probably r ≥ 5),
we expect our numerical method to be sharper than our upper bound. On the other
hand, if r is small (probably r ≤ 4), we expect our upper bound to be sharper. (We
mention that even though our numerical method was developed to compute Er(�a) for
any r, it becomes prohibitively slow in the present example if r is greater than 2).
To illustrate the above statement, consider a di&erent example in which the trans-

formation is cubic to orthorhombic with one of the transformation strains given by

> � 0
� > 0
0 0 −2 >


 (54)

for some material parameters > and �. In this case, the transformation strains are
pairwise compatible. Thus, the e&ective energy corresponding to any applied strain
in the convex hull of the transformation strains is 0. Moreover, as it was shown in
[3], for any such applied strain there exists an optimal microstructure in the class
of laminates of rank no higher than Fve. In fact, a dimensionality argument shows
that laminates of rank at least four are required to attain general applied strains in
the convex hull of the transformation strains with 0 energy (it is the belief of the
author that for some applied strains rank-four laminates are not enough, we really need
rank-Fve laminates). In this example we have E1(�a) = 0 for any applied strain �a that
is a convex combination of only two transformation strains. Thus, our upper bound
gives us the exact value of the e&ective energy, E(�a) = 0 for applied strains in the
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convex hull of the transformation strains, even if we only know how to compute the
energies associated with rank-one laminates (something that can be done by hand).
On the other hand, to obtain the same results with our numerical code (without the
use of Proposition 1), our numerical code should be able to handle at least rank-four
laminates and most likely rank-Fve laminates.
This last example hints us a rule (not a rigorous statement) that we expect to be

valid in most situations: Suppose that the applied strain �a can be written as a convex
combination of k transformation strains. If k is low, we expect that low values of r
are enough for Er(�a) to approximate well E∞(�a). As k increases, we expect to need
higher values of r. Another reason to believe the validity of this rule is the following
observation: Let �T (av) be the average transformation strain

�T (av) =
1
|�|

∫
�
�T (x) dx: (55)

Let E(av)(�T (av)) be the result of minimizing the energy over microstructures whose
average transformation strain is �T (av) when the applied strain is also �T (av)

E(av)(�T (av)) = inf
�T

{
1
|�|

∫
�
W (�(x); �T (x)) dx: �a =

1
|�|

∫
�
�T (x) dx = �T (av)

}
:(56)

A simple calculation shows that, for any applied strain �a, we have

E(�a) = min
�T (av)

{
1
2
(�a − �T (av))C(�a − �T (av)) + E(av)(�T (av))

}
: (57)

If the applied strain �a is a convex combination of only two transformation strains,
say �a = x�T (i) + (1 − x)�T ( j) (for some 0¡x¡ 1, 1 ≤ i; j ≤ N ), we expect that
the volume fraction of any other transformation strain, �T (m) with m �= i; j, in an
optimal microstructure is small in order to keep the Frst term of Eq. (57) small. If this
is the case, this optimal microstructure will be close to a rank-one laminate (whose
microscopic transformation strains are �T (i) and �T ( j)). Similar arguments considering
applied strains that are a convex combination of a higher number of transformation
strains support the rule stated above.
To complete our discussion, let us consider another example. Going back to our cubic

to monoclinic transformation (one of the transformation strains given by
Eq. (45)), consider the applied strain �a = 0. It is known that the e&ective energy
of this applied strain is 0 (see Bhattacharya, 1992) and that this 0 value of the energy
can be attained with a rank-four laminate. We computed numerically the optimal ener-
gies among the microstructures in the classes of rank-one and rank-two laminates for
this applied strain. The values obtained were

E1(0) = 0:45375 GPa and E2(0) = 0:02667 GPa:

On the other hand, as already mentioned before, the values obtained from our upper
bound are 0:01025 GPa if we consider only rank-one laminates and 0:003703 GPa if
we consider rank-two laminates. Note that, in agreement with our previous discussion,
the upper bound approximates much better the e&ective energy, for this applied strain
�a = 0, than the direct numerical calculation when we consider laminates of rank one
and two only.
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6.3. Discussion

We will now comment on the possible signiFcance of the calculations presented in
this section. Shape-memory alloys are materials that recover their original shape when
heated after having undergone apparently plastic deformations. A main component in
some models of shape-memory materials is the assumption that the set of recoverable
strains R (i.e. the applied strains that can be recovered on heating) are the strains for
which the e&ective energy is small (see Bhattacharya and Kohn, 1996, 1997; Shu and
Bhattacharya, 1998)

R= {�: E(�) ≤ 
}: (58)

Sometimes 
 is taken to be 0, but materials can withstand coherently small elastic
strains and thus, it is possible that strains for which the energy is small but not 0
may also be recoverable. In any case, 
 should be very small. If the transformation
strains are pairwise compatible, the e&ective energy restricted to the convex hull of
the transformation strains is 0 and outside this set it increases quadratically, remain-
ing small only for a short distance. Thus, if the transformation strains are pairwise
compatible, the convex hull of the transformation strains is regarded by these models
as a good approximation of the set of recoverable strains. The question that arises is:
If the transformation strains are not pairwise compatible, under what conditions (i.e.
for what material parameters) is the convex hull of the transformation strains a good
approximation of the set of recoverable strains?
We are not attempting to completely answer this question here, just to discuss it.

In this regard, we note that our upper bound for the e&ective energy restricted to the
convex hull of the transformation strains is 0:003707 GPa. As a source of comparison,
we note that �T (1)C�T (1)=2 = 1:74 GPa, thus, roughly speaking, an elastic strain whose
energy is �C�=2 = 0:003707 GPa, is a lot smaller than the transformation strain (if
� = x�T (1), we have x = 0:046). Thus, we can say that our upper bound is small. We
remark that the fact that our upper bound is small does not mean that the set of zero
energy is close to the convex hull of the transformation strains (the e&ective energy
can be small but nonzero in a large set).
The exact evaluation of the e&ective energy has proven to be a very diNcult prob-

lem. If the goal is to answer the above question regarding shape-memory alloys, our
calculations suggest it might be worth pursuing an alternative easier approach, namely,
improve upon the bound obtained here (by for example considering laminates of higher
rank than two and allowing for the elastic moduli to be anisotropic since Proposition
1 is also valid in this case). Having sharper quantitative results would allow to test
the existing theories, in particular, try to establish under which conditions Eq. (58) is
valid and how small should 
 be.
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Appendix. Optimal rank-one laminates

In this appendix we present the calculations required in Section 4.1 to compute
optimal rank-one laminates. We start by solving Eq. (25) for b. We Frst note that

(b⊗ n̂)n̂= b and (n̂⊗ b)n̂= (n̂:b)n̂:

Next we introduce the notation

B= �T (�) − �T (�) (A.1)

and manipulate Eq. (25) to rewrite it as

b+
(n̂:b)
1− 2	

n̂= Bn̂+
	

1− 2	
tr(B)n̂: (A.2)

where tr(B) denotes the trace of B, tr(B) =
∑3

i=1 Bii. We now multiply (A.2) by n̂ to
get

2(1− 	)
1− 2	

n̂:b= n̂Bn̂+
	

1− 2	
tr(B) (A.3)

and Fnally conclude (from the last two equations) that

b= Bn̂+
	 tr(B)− (n̂Bn̂)

2(1− 	)
n̂: (A.4)

We now proceed to minimize Eq. (26) over all vectors n̂ with norm 1. Using Eqs.
(3), (23) and (24), and after some algebraic manipulation, we can rewrite Eq. (26) as

�W (��; �T (�)) + (1− �)W (��; �T (�))

=
1
2
(�a − �T (L))C(�a − �T (L))

+
1
2
�(1− �)(b⊗ n̂+ n̂⊗ b− B)C(b⊗ n̂+ n̂⊗ b− B);

where �T (L) was introduced in Eq. (28). Our problem in hand now reduces to minimize

f = f(n̂) =
1
2


(b⊗ n̂+ n̂⊗ b− B)C(b⊗ n̂+ n̂⊗ b− B) (A.5)

over all vectors n̂ of norm 1, with b given by Eq. (A.4). Using the expressions for the
elastic tensor C (see Eq. (1)), f can be explicitly written as a function of n̂ and B

f = BijBij +
	

1− 	
tr(B)2 − 2	

1− 	
tr(B)(n̂Bn̂) +

1
1− 	

(n̂Bn̂)2 − 2|Bn̂|2: (A.6)

We minimize this last equation using Lagrange multipliers

@f
@n̂i

= 4an̂i for some real number a:

More explicitly we have

(n̂Bn̂)− 	 tr(B)
1− 	

Bn̂− B2n̂= an̂: (A.7)
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To compute a as function of n̂ and B, we multiply Eq. (A.7) by n̂

a=
(n̂Bn̂)− 	 tr(B)

1− 	
(n̂Bn̂)− |Bn̂|2: (A.8)

We now argue as follows. Let v be an eigenvector of B and let z be its eigenvalue.
Multiplying Eq. (A.7) by v we obtain

n̂ : v= 0 or z2 +
	 tr(B)− (n̂Bn̂)

1− 	
z + a= 0: (A.9)

If B has 3 di&erent eigenvalues, these equations imply that n̂ : v=0 for some eigenvector
v (because if not, the second degree polynomial in z given in Eq. (A.9) would have
3 di&erent roots). If B does not have 3 di&erent eigenvalues, then, it is also (trivially)
true that n̂ : v= 0 for some eigenvector of B. Thus, given also that B is symmetric, we
conclude that we can write

n̂= y1v1 + y2v2 (A.10)

for some eigenvectors vi of B and some numbers yi. Let zi be the eigenvalue of vi. If
both y1 and y2 are di&erent from 0, then, from Eq. (A.9), we have

z1z2 = a and z1 + z2 =
(n̂Bn̂)− 	 tr(B)

1− 	
: (A.11)

From Eqs. (A.6), (A.8) and (A.11) and the fact that

BijBij =
3∑

i=1

z2i ;

after some algebraic manipulation, we obtain that

f = (1 + 	)z23 (A.12)

(z3 being the other eigenvalue, corresponding to the eigenvector v3 orthogonal v1 to
and v2). If on the other hand one of the numbers yi of Eq. (A.10) is 0, i.e. n̂ is
eigenvector of B of eigenvalue say z1, we can immediately compute f

f =
	

1− 	
(z2 + z3)2 + z22 + z23 : (A.13)

This last two equations gives us all the possible extreme values of f. Since we
are interested in the minimum (and 0¡	¡ 1), obviously our best choice would be
Eq. (A.12) with z3 being the eigenvalue of minimum absolute value. For this choice to
be valid, we need to check that we can Fnd numbers y1 and y2 so that Eqs. (A.11) are
satisFed with n̂ having norm 1 and given by Eq. (A.10). Some algebra shows that for
such a solution to exist, the two eigenvalues of B with largest absolute value (z1 and
z2) have to have di&erent sign (unless one is 0). This condition is certainly satisFed
if the trace of B is 0, and since this is the only case we consider, we have that for the
purposes of this paper the minimum value of f is

f = (1 + 	)min{z2: z is eigenvalue of B}; (A.14)

from where (27) and (29) immediately follows.
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