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Fluids with particles in suspension can be extracted through an orifice until particles bridge across
the opening and clog it. We derive and study a mathematical model to predict the volume of fluid
that can be extracted before clogging. Numerical simulations and closed-form upper and lower
bound solutions show the dependency of the expected extracted volume on the volume fraction of
particles in suspension and the relative particle-to-orifice size. These results are the first step toward
a comprehensive understanding of the physical mechanisms leading to filter clogging with relevance
to geomaterials, biomaterials, and industrial applications. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1818342]

Fluid flow in porous media often involves the migration
of fine particles. Under certain conditions, fine particles may
clog the porous medium and cause a large decrease in hy-
draulic conductivity. Thus, it is important to understand the
physical mechanisms that lead to clogging to try to design
extraction procedures that prevent clogging. A relevant ex-
ample is petroleum production where clogging leads to “for-
mation damage” and marked loss of revenue. Clogging plays
an important role in other mechanical and biological systems
such as filters in water treatment, pharmaceutical processes,
lungs and kidneys.

Various physical mechanisms converge to cause the
clogging of a porous network.1–11 The following simplified
sequence of events underlies most clogging processes. The
flow of the fluid phase drags fine particles; however, the rate
of fines transport is lower than the rate of fluid transport
because of electrical attraction to or collisions against pore
walls. Retardation increases the local volume fraction of par-
ticles. If several migrating particles reach a pore throat si-
multaneously, the particles may bridge across the constric-
tion and significantly lower the flow rate(pore throats are
typically two to five times larger than the clogging migrating
fines). In the vicinity of the clogged pore, the fluid velocity
increases, promoting more collisions, retardation, and new
bridging and clogging. Eventually, all fluid paths become
clogged within an annular zone at some characteristic dis-
tance from the well.11

In this letter we study the following simple experiment
that captures the main aspects of clogging at a single pore
throat: A container is filled with a suspension made of an
incompressible liquid and spherical particles. An opening is
made in the container wall through which the suspension
flows. The particles may or may not clog the opening. Our
goal is to predict the volume of fluid extracted before clog-
ging (if clogging does occur). The experiment described is
illustrated in Fig. 1(for clarity, the container and the particles
are drawn in-plane as two-dimensional objects).

Our model relies on the following assumptions. The flow
is not disturbed by the presence of particles. The center of
each particle follows the fluid flow without retardation or

advance. Before the opening is made, the center of each par-
ticle is randomly placed inside the container with a uniform
probability distribution in space. The fluid and the particles
are incompressible. Note that these assumptions allow par-
ticles to overlap.

We denote the area of the orifice byA and the volume
fraction of particles byb. All the particles have the same
radiusr and volumeVp=4pr3/3.

For each pointx in the container, we denote byFsxd the
volume of fluid extracted by the time the element of fluid
initially at x reaches the opening. The left panel in Fig. 2
shows a two-dimensional sketch of level sets of the function
F (the actual level sets ofF are surfaces within the three-
dimensional container). Due to the incompressibility of the
fluid, the region enclosed by the level setshx:Fsxd=V
+DVj and hx:Fsxd=Vj has volumeDV.

To motivate our criteria for clogging, assume that the
fluid velocity is constant in space across the opening and out
of the container. Once the volume of fluid initially in
hx:V,FsxdøV+rAj leaves the container, it forms a hypo-
thetical cylinder with heightr (see the right panel in Fig. 2).
Since the centers of particles flow with the fluid, the number
of centers of particles that belong to this cylinder is equal to
the number of centers of particles initially placed in
hx:V,FsxdøV+rAj. We denote this number byksVd, i.e.,

ksVd = number of particles initially

placed inhx:V , Fsxd ø V + rAj. s1d

Note that the particles whose centers belong to this cylinder

a)Electronic mail: ggold@math.gatech.edu

FIG. 1. Suspension in container. The left panel shows the container filled
with the suspension before the opening is made. The right panel shows the
system once clogging takes place.
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arrive “almost simultaneously” at the opening. We propose
that clogging occurs whenksVd, the number of particles ar-
riving almost simultaneously at the opening, exceeds a
thresholdkmax. Thus, the volume of fluid extracted is

V! = min
hV:ksVd.kmaxj

V. s2d

We definel to be

l =
rA

Vp
=

3A

4pr2 . s3d

Since the number of centers of particles that can belong to
the cylinder under the condition that the particles do not
overlap increases linearly withl, we assume thatkmax is of
the form

kmax= gl, s4d

where g is a parameter to be experimentally determined.
Given a realization, Eqs.(1)–(4) determine the extracted vol-
umeV!. The numerical algorithm to computeV! is described
next.

Consider a large but finite numberN of particles, form-
ing a suspension of volumeVs, so that the volume fraction of
particles isb=NVp/Vs. The initial location of each particle is
a random variable with uniform probability distribution. This
fact along with the incompressibility of the fluid imply that
the volume extracted by the time a particle reaches the open-
ing is also a random variable with uniform probability dis-
tribution. As a consequence, ifVi is the volume extracted
when theith particle reaches the opening, these volumesVi
are the result of orderingN numbers selected independently
with uniform probability distribution in the intervalf0,Vsg.
This is illustrated in Fig. 3.

Graphically, the algorithm developed to compute the ex-
tracted volume, given a suspension realization, consists of
placing a segment of lengthrA on top of the vertical volume
axis of Fig. 3 with the left end at 0, then moving the segment
in the upward direction. As soon as the segment covers more
thankmax particles simultaneously, clogging is predicted, and
the location of the lower end of the segment is the extracted
volume V! prior to clogging. More precisely, for eachi we
defineki to be the largest integer such thatVi−ki+1.Vi −rA
(andki ø i). If i!=minhi :ki .glj exists, clogging occurs and

V! =H0 if Vi! , rA

Vi! − rA if Vi! ù rA.
s5d

This observation leads to the following algorithm to compute
V! for a given realization

i ←1
k←1
While køgl and i ,N

i ← i +1
k←k+1
While Vi−k+1øVi −rA

k←k−1
end

end
If i =N andkøgl then

V!←Vs
else

V!←maxh0,Vi−k+1j
end

The expected extracted volumeEsV!d is computed by aver-
aging the values obtained ofV! for a large number of differ-
ent realizations.

In addition to the above-described numerical method, we
have also obtained upper and lower bounds of the expected
extracted volume. If the minimization of Eq.(2) is restricted
to discrete values ofV=nrA, wheren is an integer(instead of
all positiveV), a closed form solution is obtained. The search
for a minimum value in a subset renders a value equal to or
larger than the true minimum. These arguments lead to the
following upper bound of the expected extracted volume(the
complete details are given in Ref. 12):

Vu =
mu

1 − mu
rA,

where

mu = e−lb o
0økøgl

slbdk

k!
. s6d

Given our criterion for clogging, the number of volumes
Vi in the intervalsV! ,V!+rAg, whereV! is the volume ex-
tracted, is greater thankmax (see Fig. 3). Thus, if n is such
that nrAøV!, sn+1drA, then either the intervalsnrA,sn
+1drAg or the intervalssn+1drA ,sn+2drAg contains at least
kmax/2 of the volumesVi. Consequently, ifm is the first
integer for whichsmrA,sm+1drAg containskmax/2 of the
volumesVi, thenV!ù sm−1drA. This observation and simi-
lar techniques used to compute the upper bound lead to the
following lower bound of the expected extracted volume(the
complete analysis is given in Ref. 12)

FIG. 2. The left panel is a two-dimensional sketch of level sets ofF. The
region enclosed by the dashed lines ishx:V,FsxdøV+DVj. The right
panel is a two-dimensional sketch of the three-dimensional cylinder(en-
closed by dashed lines) which is formed by the suspension initially in
hx:V,FsxdøV+rAj.

FIG. 3. The initial location of theith particle to reach the opening isxi. The
dashed lines are the level sets ofF. Vi =Fsxid is the volume extracted when
the ith particle reaches the opening.V! is the volume extracted before
clogging.
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V, =
m,

1 − m,

rA,

where

m, = e−lb o
0økøgl/2

slbdk

k!
. s7d

A simple calculation shows that, in the parameter regime
lb!1, the asymptotic behavior of the bounds is

Vu .
sfglg + 1d!
slbdfglg+1 rA, V, .

sfgl/2g + 1d!
slbdfgl/2g+1 rA, s8d

wherefglg is the integral part ofgl, i.e., the largest integer
that is not greater thangl. Equations(6) and (7) [and more
explicitly, Eq. (8)] highlight the critical role of the relative
particle-to-opening size(captured inl) and the volume frac-
tion b in determining the extracted volume.

Experimental results reported in Ref. 11 are simulated
herein to infer the value ofg [see Eq.(4)]. The experimental
procedure involves a 316 cm3 cylinder filled with a suspen-
sion of spherical nylon spheres of radiusr =1.58 mm in wa-
ter. Salt was added to the water until the fluid and particle
mass densities matched and the suspension was made stable.
The test started when a circular opening at the bottom of the
cylinder was unplugged; the main observation was whether
clogging developed during the 316 cm3 flow through vol-
ume. The multiple tests conduced with various particle vol-
ume fractionsb and opening diameters permitted defining a
boundary between clogging and not-clogging conditions in
terms of relative size[captured inl defined in Eq.(3)] and
volume fractionb. We simulated these results using the nu-
merical code and obtained a least-squares fit forg=1.05.
Measured and predictedl values are compared in Table I for
different volume fractionsb. Note that the smaller the par-

ticle volume fractionb, the smaller the relative opening-to-
particle size must be(i.e., l) to observe clogging within a
given flow through volume. We anticipate thatg is a material
parameter that depends on particle geometry and the ensuing
inter-particle friction and interlocking.

In Fig. 4, the expected extracted volumeEsV!d and the
upper and lower boundsVu and V, are plotted versus the
volume fractionb, for a value ofl=3. The expected ex-
tracted volumes were numerically computed with the method
described in this letter. Note that, for a circular opening,l
=3 when the radius of the orifice is twice the radius of the
particles.
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TABLE I. Experimental and theoretical(with our numerical code andg
=1.05) values ofl, for different values of particle volume fractionb, for
which the extracted volume is 316 cm3. The diameter of the particles is
0.3175 cm.

b 0.1 0.125 0.15 0.175 0.2

Experimental 3.9 4.3 4.7 5.1 5.5
Theoretical 3.2 4.0 5.0 5.4 5.9

FIG. 4. Normalized expected extracted volumeEsV!d / srAd (dotted line)
normalized upper boundVu/ srAd (upper solid line) and normalized lower
boundV, / srAd (lower solid line) vs volume fractionb (for l=3 andg=1).
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