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We consider materials with large pores interconnected by thin long channels saturated with an
incompressible fluid. In the absence of fluid flow, solute transport in the porous network is diffusion
controlled, however, solute transport can be enhanced when the porous network is subjected to a
cyclic flow with zero time average velocity. We develop a mathematical model to analyze this
physical phenomenon and obtain an effective macroscale diffusion coefficient for solute transport
which dependends on cyclic flow conditions and the geometry of the porous network. ©2004
American Institute of Physics. [DOI: 10.1063/1.1791328]

We study solute transport in fluid filled porous networks.
In the absence of fluid flow, solute transport is diffusion con-
trolled. The diffusion time for distanceX is of the order
X2/D, where D is the diffusion coefficient. The diffusion
coefficient in electrolytes is small(typically in the order of
10−9m2 s−1). Moreover, diffusion is reduced by interfacial
phenomena and tortuosity in high specific surface porous
networks(i.e., submicron pore size). In this study, we ana-
lyze a mechanism that enhances transport in porous networks
subjected to zero time-average cyclic flow.

The material microstructure consists of large pores inter-
connected by long thin channels. Bones exhibit this type of
porous structure where large pores are called “lacunae,”
channels “canaliculi,” and the solutes transported include nu-
trients. The ideal lacunar-canalicular system we model is dis-
played in Fig. 1. The first channel is connected to a reservoir
of solute with concentrationcr, while the initial concentra-
tion of solute isc0 everywhere else in the network.

Mixing due to diffusion within a lacuna occurs in times
of the order,2/D, where, is the diameter of a lacuna(see
Fig. 1), while the mixing time(due to diffusion) within a
canaliculus is of the ordersL−,d2/D, where L−, is the
length of a canaliculus(see Fig. 1). We consider cyclic flows
with periods much larger than,2/D and much smaller than
sL−,d2/D. Thus, we assume that mixing is instantaneous
within lacunae and negligible within canaliculi(other mixing
mechanisms within the channels, such as Taylor dispersion,1

are neglected).
There is an inflow of volumeVF from the reservoir dur-

ing the part of the period where the fluid velocity is positive.
If VF,Vc, whereVc is the volume of a channel, solute from
the reservoir does not reach the first pore. Since there is no
mixing within the channels and the time average velocity is
zero, all the solute that enters the system goes back to the
reservoir after a period. Therefore, there is no solute trans-
port at the end of one cycle. However, ifVF.Vc, as soon as
some solute from the reservoir reaches the first pore, there is
instantaneous mixing in that pore and the fluid that flows
from that pore into the second channel carries solute that was
initially in the reservoir. After a complete period, solute that
was initially in the reservoir will be left in pores and chan-

nels. Hence, there is a net transport of solute after each
period.

Solute transport in porous media is a subject of intensive
study. Examples include Refs. 2–4. In the context of bone, it
was first noted in Ref. 5 that advection in the lacunar-
canalicular system induced by loading and unloading in-
creases the transport of nutrients(see also Ref. 6). This phe-
nomena was studied experimentally in Ref. 7. The role of
fast mixing within lacunae to enhance nutrient transport has
been postulated and explored in Ref. 8. Our work is the first
formal and detailed mathematical analysis of this transport
phenomenon. We demonstrate the diffusion-like macroscale
behavior and provide an explicit formula for the effective
diffusion coefficient.

The lacunar-canalicular system we consider extends to
infinite. The right wall of the reservoir is the origin of the
coordinate system,x=0, the location of theith canaliculus is
the segmentfsi −1dL , iL −,g and the location ofith lacuna is
fiL −, , iLg. The cross-sectional area of a canaliculus isa. We
denote byVc=sL−,da andV, the volume of each canaliculus
and lacuna, respectively(Fig. 1). We assume rigid solid
phase(i.e., a, Vc, andV, are constants). An incompressible
fluid fills the lacunar-canalicular system. The solute concen-
tration in the reservoir remains at the constant valuecr, while
the concentration of nutrients in the lacunar-canalicular sys-
tem starts at initial valuec0.

We denote bycistd the concentration of nutrients at time
t in the ith lacuna. Forx in canaliculi, we denote bycsx,td
the concentration of nutrients atx and timet. Since diffusion
and dispersion are negligible within canaliculi, the solute
flows with the same velocity as the fluidv=vsx,td within
canaliculi. Fluid incompressibility and mass conservation

a)Electronic mail: ggold@math.gatch.edu FIG. 1. Idealized one-dimensional lacunar-canalicular system.
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implies thatv is independent ofx, i.e., v=vstd. Solute con-
servation within the channels reduces to

] c

] t
+ v

] c

] x
= 0 s1d

for all x in canaliculi.
Whenever the velocity is positive, there is flow of solute

from the ith canaliculus into theith lacuna at a rate
avstdcsiL −, ,td. Solute also flows out of that same lacuna
into thesi +1dth canaliculus at a rateavstdcistd. Analogously,
when the velocity is negative, there is flow of solute from the
si +1dth canaliculus into theith lacuna at a rate −avstdcsiL ,td
and flow out of that same lacuna into theith canaliculus at a
rate −avstdcistd. This implies

V,

dci

dt
= HavscsiL − ,,td − cistdd whenvstd . 0

avscistd − csiL,tdd whenvstd , 0
s2d

for all positive integeri.
Furthermore, whenever the velocity is positive, there is

flow from each lacuna into the canaliculus located at its right
and thus, the solute concentration in the left end of a canali-
culus is equal to the solute concentration in the neighboring
lacuna at the left of the canaliculus. Analogously, whenever
the velocity is negative, the solute concentration in the right
end of a canaliculus is equal to the solute concentration
in the lacuna located at the right of end the canaliculus.
Mathematically,

cssi − 1dL,td = ci−1std if vstd . 0,

cssi + 1dL − ,,td = ci+1std if vstd , 0, s3d

the first of the above equations being valid for all integeri
ù2 and the second for all integeri ù0.

Similarly, whenever the velocity is positive, there is flow
from the reservoir into the first canaliculus, i.e., the solute
concentration at the left end of the first canaliculus is equal
to the solute concentration in the reservoircr,

cs0,td = cr if vstd . 0. s4d

The initial concentration in the network isc0, thus

cis0d = c0 s5d

for all positive integeri.
We assume that the flow velocity in canaliculiv is

a known periodic function with periodt0 and zero time
average

E
0

t0

vstddt = 0. s6d

This restriction is inherent to closed systems such as bones,
where the volume of the porous network returns to its origi-
nal value at the end of every cycle.

To simplify our analysis we assume that there exist
0, t!, t0 such that vstd.0 if 0, t, t! and vstd,0 if
t!, t, t0. Thus, the volume of fluid that flows from the os-
teonal canal into the lacunar-canalicular system in the time
interval 0, t, t! is

VF = aE
0

t!

vstddt. s7d

Let r=rsz,td be the solution

] r

] t
= D

]2r

] z2 for t . 0 andz. 0, s8d

whereD is defined below in Eq.(16), subjected to the initial
conditions

rsz,0d = c0 for z. 0 s9d

and boundary conditions

rs0,td = cr, lim
z→+`

rsz,td = c0 for t ù 0. s10d

Extend the definition ofr to z,0 as follows:

rsz,td = cr if zø 0, s11d

and letzi =zistd be defined as

zistd = iL −
aL

V, + Vc
E

0

t

vssdds. s12d

Note that the variablez is like a Lagrangian coordinate,
which is related to the original space variablex by the
formula

z= x −
aL

V, + Vc
E

0

t

vssdds. s13d

It can be shown thatr gives the asymptotic approximation of
the concentrations, more precisely

cistd . rszistd,td if VF @ Vc. s14d

This system of equations can be solved explicitly,

rsz,td = cr + sc0 − crd
2

Îp
E

0

z/s2ÎDtd
e−s2

ds. s15d

The effective diffusion coefficients is

D = Deff = S V,

Vc + V,
D2S VF

Vc + V,
DSL2

t0
D . s16d

We define the parametersa=VF / sVc+V,d and b
=V, / sVc+V,d. Figure 2 shows a plot of concentrationrsz,td
versus normalized distancez/L at different fixed values oft.
Figure 3 shows the evolution of concentration in the fifteenth
lacunarsz15std ,td versus normalized timet / t0. The oscilla-
tions in concentration reflect the evolution in concentration

FIG. 2. Plot of concentrationr vs normalized distancez/L for different
fixed values oft. The selected parameter values area=5 andb=0.99 and
the velocity profilevstd=sat0d−1spVFdsins2pt / t0d.
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in each cycle of the periodic velocity fieldv. Mathematically,
these oscillations reflect the evaluation ofr in szistd ,td in the
approximation(14) andzistd are periodic functions with pe-
riod t0 (see Eq.(12)). We have also plotted the envelope of
the concentration at the end of each cyclers15L ,td and the
envelope of the concentration at flow reversalrfs15
−adL ,tg versus normalized timet / t0. Note thatrsiL ,td can
be interpreted as the total concentration of nutrientsrszistd ,td
minus the oscillatory advective component. Figure 4 also
showsrs15L ,td andrss15−adL ,td in a longer time scale to
illustrate the convergence tocr of the concentration in the
fifteenth lacuna after a large number of cycles.

To conclude, we present a brief illustrative analysis for
typical parameters in bones: lacunae(about 15mm long and
5:1 to 10:1 aspect ratio), canaliculi (about 40mm long,
0.2 mm diameter), and the excitation periodst0=1 sd. The
following observations can be made.(1) Molecular diffusion
in lacunae is faster than the natural excitation period, there-
fore the assumption of instantaneous mixing is adequate
even in the absence of hydrodynamic mixing effects.(2) The
volume of a lacuna is much greater than the volume of a

canaliculus; then the effective diffusion coefficient(see Eq.
(16)) becomesDeff=sL2/ t0dsVF /V,d. For the selected param-
eters, the ratio betweenL2/ t0=1.6310−9m2 s−1 is in the or-
der of molecular diffusion. Therefore, transport in cyclic
flow with mixing will benefit the transfer of nutrients in
bones ifVF /V,.1. (3) The estimated Taylor dispersion(see
Ref. 7) in canaliculi is in the order of 10−16m2 s−1 and can be
neglected.
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FIG. 3. Plot of concentrationrsz15std ,td (dashed line), rs15L ,td (lower solid
line), and rss15−adL ,td (upper solid line) vs normalized timet / t0. The
parameters are the same as in Fig. 2.

FIG. 4. Plot of concentrationrs15L ,td (lower line), andrss15−adL ,td (up-
per line) vs normalized timet / t0 in log scale. The parameters are the same
as in Fig. 2.

2434 Appl. Phys. Lett., Vol. 85, No. 12, 20 September 2004 G. H. Goldsztein and J. C. Santamarina

Downloaded 22 Dec 2008 to 130.207.50.192. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp


