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Solute transport during cyclic flow in saturated porous media
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We consider materials with large pores interconnected by thin long channels saturated with an
incompressible fluid. In the absence of fluid flow, solute transport in the porous network is diffusion
controlled, however, solute transport can be enhanced when the porous network is subjected to a
cyclic flow with zero time average velocity. We develop a mathematical model to analyze this
physical phenomenon and obtain an effective macroscale diffusion coefficient for solute transport
which dependends on cyclic flow conditions and the geometry of the porous netw@R0®
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We study solute transport in fluid filled porous networks.nels. Hence, there is a net transport of solute after each
In the absence of fluid flow, solute transport is diffusion con-period.
trolled. The diffusion time for distanc&X is of the order Solute transport in porous media is a subject of intensive
X2/D, whereD is the diffusion coefficient. The diffusion study. Examples include Refs. 2—4. In the context of bone, it
coefficient in electrolytes is smaftypically in the order of was first noted in Ref. 5 that advection in the lacunar-
10°m? s71). Moreover, diffusion is reduced by interfacial canalicular system induced by loading and unloading in-
phenomena and tortuosity in high specific surface porousreases the transport of nutrieiggee also Ref. )6 This phe-
networks(i.e., submicron pore sizeln this study, we ana- nomena was studied experimentally in Ref. 7. The role of
lyze a mechanism that enhances transport in porous networkast mixing within lacunae to enhance nutrient transport has
subjected to zero time-average cyclic flow. been postulated and explored in Ref. 8. Our work is the first
The material microstructure consists of large pores interformal and detailed mathematical analysis of this transport
connected by long thin channels. Bones exhibit this type ophenomenon. We demonstrate the diffusion-like macroscale
porous structure where large pores are called “lacunaebehavior and provide an explicit formula for the effective
channels “canaliculi,” and the solutes transported include nudiffusion coefficient.
trients. The ideal lacunar-canalicular system we model is dis- The lacunar-canalicular system we consider extends to
played in Fig. 1. The first channel is connected to a reservoitifinite. The right wall of the reservoir is the origin of the
of solute with concentratiow,, while the initial concentra- coordinate systenx=0, the location of théth canaliculus is
tion of solute isc, everywhere else in the network. the segmenifi(i—1)L,iL —€] and the location oith lacuna is
Mixing due to diffusion within a lacuna occurs in times [iL—¢,iL]. The cross-sectional area of a canaliculua.igve
of the order¢?/D, where{ is the diameter of a lacun@ee denote byW,=(L-¢)a andV, the volume of each canaliculus
Fig. 1), while the mixing time(due to diffusion within a  and lacuna, respectivelgFig. 1). We assume rigid solid
canaliculus is of the ordefL-¢€)%/D, where L—¢ is the phase(i.e., a, V., andV, are constanys An incompressible
length of a canaliculugsee Fig. 1. We consider cyclic flows fluid fills the lacunar-canalicular system. The solute concen-
with periods much larger thaé?/D and much smaller than tration in the reservoir remains at the constant vajuevhile
(L-¢)?/D. Thus, we assume that mixing is instantaneoughe concentration of nutrients in the lacunar-canalicular sys-
within lacunae and negligible within canalicgtither mixing ~ tem starts at initial value,.
mechanisms within the channels, such as Taylor dispefsion, ~We denote by;(t) the concentration of nutrients at time
are neglected t in theith lacuna. Foix in canaliculi, we denote bg(x,t)
There is an inflow of volum&/¢ from the reservoir dur- the concentration of nutrients atand timet. Since diffusion
ing the part of the period where the fluid velocity is positive.and dispersion are negligible within canaliculi, the solute
If VE<V,, whereV, is the volume of a channel, solute from flows with the same velocity as the fluid=v(x,t) within
the reservoir does not reach the first pore. Since there is neanaliculi. Fluid incompressibility and mass conservation
mixing within the channels and the time average velocity is
zero, all the solute that enters the system goes back to the
reservoir after a period. Therefore, there is no solute trans- reservoir Hﬁ

port at the end of one cycle. HoweverMg >V, as soon as ‘ L
some solute from the reservoir reaches the first pore, there is .
instantaneous mixing in that pore and the fluid that flows D O 1 —=4
from that pore into the second channel carries solute that was N7
initially in the reservoir. After a complete period, solute that thin long channels large pores
was initially in the reservoir will be left in pores and chan- ‘

\O T
¥Electronic mail: ggold@math.gatch.edu FIG. 1. Idealized one-dimensional lacunar-canalicular system.
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implies thatv is independent ok, i.e., v=v(t). Solute con-

servation within the channels reduces to Car

t = 1000t

Jc  dc
—+v—=0 (1)
at aX

for all x in canaliculi.

Whenever the velocity is positive, there is flow of solute
from the ith canaliculus into theith lacuna at a rate
av(t)c(iL—¢,t). Solute also flows out of that same lacuna
into the(i+1)th canaliculus at a ratav(t)c;(t). Analogously,
when the velocity is negative, there is flow of solute from the
(i+1)th canaliculus into théh lacuna at a rateav (t)c(iL ,t) 0 ‘ 40
and flow out of that same lacuna into ttik canaliculus at a i = z/L
rate -av(t)c(t). This implies

Col

dc av(c(iL - €,t) —¢i(t)) whenuv(t) >0 FIG. 2. Plot of concentratiop vs normalized distance/L for different
= . (2) fixed values oft. The selected parameter values are5 and3=0.99 and
dt av(ci(t) - c(iL,t))  wheno(t) <0 the velocity profile(t) = (at)~X(mV)sin(2at/ty).

for all positive integeii.

Furthermore, whenever the velocity is positive, there is  dp
flow from each lacuna into the canaliculus located atits right ;¢ =~ 52
and thus, the solute concentration in the left end of a canali-
culus is equal to the solute concentration in the neighboringvhereD is defined below in Eq16), subjected to the initial
lacuna at the left of the canaliculus. Analogously, whenevegonditions
the velocity is nggative., the solute concentration in the right p(2,0) = ¢, for 2> 0 (9)
end of a canaliculus is equal to the solute concentration
in the lacuna located at the right of end the canaliculusand boundary conditions

Mathematically, p(0,t)=c,, lim p(z,t) =cyfor t=0. (10
c((i—=1)L,t)=ci_4(t) if v(t)>0, e

2

D fort>0 andz> 0, (8)

Extend the definition op to z<0 as follows:

+ - =
c((i+1)L-¢,t)=ciq(t) if v(t) <O, (3) pzt)=c if 2=0, 11
the first of the above equations being valid for all integer i
=2 and the second for all integee 0. and letz=z(t) be defined as
Similarly, whenever the velocity is positive, there is flow aL [t
from the reservoir into the first canaliculus, i.e., the solute  z(t) =iL - f v(s)ds. (12
concentration at the left end of the first canaliculus is equal Ve+Velo

to the solute concentration in the reservair Note that the variable is like a Lagrangian coordinate,

c(0,t)=c, if v(t)>0. (4)  which is related to the original space variabteby the

_— S . formula
The initial concentration in the network ¢, thus

_ aL !
¢i(0)=co (5 Z=X- Ty J v(s)ds. (13
€ cJO

for all positive integeii. _ _ o
We assume that the flow velocity in canalicaliis It can be show_n that gives the asymptotic approximation of

a known periodic function with period, and zero time the concentrations, more precisely

average

) Gi(t) = p(z(1),1) if V> V. (14
0
f v(t)dt=0. (6) This system of equations can be solved explicitly,
0 2(2\Dy)

This restriction is inherent to closed systems such as bones, P(Zt) = ¢+ (Co- Cr)V_gT e” ds. (19
where the volume of the porous network returns to its origi- 0
nal value at the end of every cycle. The effective diffusion coefficients is

To simplify our analysis we assume that there exist

. : . ; Ve \ Vv L?
0<t*<ty such thatu(t)>0 if 0<t<t* and v(t)<O if D =Dgg = ¢ F il (16)
t* <t<t,. Thus, the volume of fluid that flows from the os- Vet Vi) \Ve+Ve/\ 1o

teonal canal into the lacunar-canalicular system in the time

i _ N
interval 0= t<t* is We define the parametersv=Vg/(V.+V,) and B

=V,/(V.+V,). Figure 2 shows a plot of concentratip(e,t)

t versus normalized distaneéL at different fixed values of.
Ve = af v(t)dt. (@) Figure 3 shows the evolution of concentration in the fifteenth
0 lacunap(z;5(t),t) versus normalized timé/ty. The oscilla-
Let p=p(z,t) be the solution tions in concentration reflect the evolution in concentration
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FIG. 3. Plot of concentratiop(z(t),t) (dashed ling p(15L,t) (lower solid 100 ‘ |105 ‘ 1010
line), and p((15-a)L,t) (upper solid ling vs normalized timet/t,. The
parameters are the same as in Fig. 2. t/tO

FIG. 4. Plot of concentratiop(15L,t) (lower lin n 15-a)L,t -
in each cycle of the periodic velocity field Mathematically, pecr; line v; ngrrzoaliz(;d t?mgeio 'isrl;‘lo)g(socatlee. Tﬁ)é za(rjaprget!sers )ar’e )trg:psame
these oscillations reflect the evaluationeah (z(t),t) inthe  asin Fig. 2.
approximation(14) andz(t) are periodic functions with pe-
riod to (see Eq(12)). We have also plotted the envelope of canaliculus; then the effective diffusion coefficigsee Eq.
the concentration at the end of each cyel@5L,t) and the  (16)) becomeD = (L2/ty)(Ve/V,). For the selected param-
envelope of the concentration at flow reversgl(15 eters, the ratio betwedrf/ty=1.6X 10°m? st is in the or-
—a)L,t] versus normalized timé/t,. Note thatp(iL,t) can  der of molecular diffusion. Therefore, transport in cyclic
be interpreted as the total concentration of nutrigizgt),t)  flow with mixing will benefit the transfer of nutrients in
minus the oscillatory advective component. Figure 4 alsdones ifVg/V,>1.(3) The estimated Taylor dispersigsee
showsp(15L,t) and p((15-a)L,t) in a longer time scale to Ref. 7) in canaliculi is in the order of 18°m? s™* and can be
illustrate the convergence tg of the concentration in the neglected.
fifteenth lacuna after a large number of cycles.
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