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Fluid in porous media flows through tortuous paths. If the size of the solid particles suspended in the
fluid and the fluid velocities are large enough, Brownian motion effects may not be dominant. In this
parameter regime, the average velocity of the particles is different than that of the fluid. We obtain
the relation between the average velocity of the particles and the average velocity of the fluid in the
context of a simple mathematical model and we apply our results to flows near wells. © 2009
American Institute of Physics. �doi:10.1063/1.3263718�

A porous medium is a material that contains spaces filled
with fluid embedded in a solid matrix. These fluid filled
spaces are called pores or voids. Soils are examples of po-
rous media.

Suspensions are fluids with suspended small solid par-
ticles that we call fine particles. When the particles are small
enough. Brownian motion causes the particles to move with
an average velocity equal to the average velocity of the fluid.
However, this may no longer be the case when the particles
are larger.

Fluid flow through porous media takes place along tor-
tuous rather than straight paths. Thus, if inertial effects out-
weigh Brownian motion effects, the tortuosity of flow paths
will cause particles to collide with pore walls as they travel
with the fluid. After each collision, a particle loses momen-
tum and needs to be accelerated again by drag forces. As a
result, the average velocity of particles may be smaller than
that of the fluid. In this letter, we develop a mathematical
model to study this phenomenon and discuss its implications
to flows near wells. Our results are relevant in other fields
where the transport of particles in porous media is of impor-
tance including transport of contaminants in soils, transport
of nutrients in bones, man made filters, and biological filters.

Two messages we hope to convey with this letter: �1�
The average velocity of the particles is sometimes different
than the average velocity of the fluid and �2� in this param-
eter regime, a fluid flow that is not homogeneous in space
will lead to a localization of particle concentration, i.e., the
particle concentration will increase in certain regions in
space. This may lead to the clogging of part of the medium.

The dynamics of particles in porous media is very com-
plex and many physical effects are important.1 Our analysis
is based on a simple model to gain understanding on the role
of inertia and path tortuosity in the velocity of the particles
while neglecting other physical effects that may also be im-
portant.

We start with a basic review of fluid mechanics. Assume
that an incompressible spherical particle with radius rp is
immersed in an incompressible Newtonian fluid that extends
to infinity. Assume also that the particle moves with constant

velocity u and the velocity of the fluid tends to the constant
value v far away from the particle. It is well known �see Ref.
2� that the drag force the fluid exerts on the particle is F
=6�rp��v−u�, where � is the fluid viscosity.

Consider now a straight channel of length � filled with
an incompressible fluid. As an approximation, assume that
the fluid velocity is constant in space through the channel.
Let v* be the fluid speed. At time t=0, we place a particle of
radius rp and density �p at the upstream end of the channel.
Let x�t� be the distance between the particle and upstream
end of the channel at time t. We approximate F, the force the
particle experiences, by the drag force it would experience if
the particle were immersed in a fluid that extends to infinity
in all directions, i.e., F=6�rp��v*−x��e, where e is the unit
vector parallel to the channel that points downstream. Thus,
the particle will move downstream according to Newton’s
law �4 /3���prp

3x�=6�rp��v*−x�� and x�0�=x��0�=0. This
initial value problem can be solved explicitly. In particular,
the time T when the particle reaches the downstream end is
given implicitly as the solution of

� = v�T −
v�

�
�1 − e−�T� where � =

9

2

�

�prp
2 . �1�

We denote by u* the average speed of the particle as it
travels through the channel. Our first goal is to find u* as a
function of the fluid speed v* and the parameters of the sys-
tem. This relation is obtained from Eq. �1� once we note that
u*=� /T and replace T by � /u* in Eq. �1�. After simple ma-
nipulations we get

1 =
v�

��
���

u� − �1 − e−��/u�
�� . �2�

Assume now that a suspension flows through the void
space of a porous medium. Let x f�t� be the path of an ele-
ment of fluid. This path will not be straight, it will be tortu-
ous. Thus, the distance traveled by the fluid element in a time
interval �t1 , t2�, which is �t1

t2�x f��t��dt, where �·� denotes the
Euclidean norm, will be larger than the distance from x f�t1�
to x f�t2�, i.e., �x f�t2�−x f�t1��−1�t1

t2�x f��t��dt�1. We refer to the
average value of this ratio over all fluid elements and time
intervals �t1 , t2�, as the tortuosity �. Note that in the literature,
tortuosity is often defined as the square of the tortuosity as
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defined here. This concept is illustrated in Fig. 1. If a typical
path traveled by an element of fluid in a porous medium is
through the segments with length �i�1� i�8�, and the dis-
tance from the initial to the final positions of the element of
fluid is L, then the tortuosity � is �= �	1�i�8�i� /L.

We denote by v the macroscopic fluid velocity, i.e., v is
the average �over the pore space� of the fluid velocity in
regions much larger than the pores but much smaller than the
material. This velocity v should not be confused with the
Darcian flow velocity vD. The relationship between these two
quantities is v=vD /�, where � is the porosity, i.e., volume
fraction occupied by the pore space.

Let v* be the average fluid speed. Since the paths trav-
eled by fluid elements are not straight lines, the average fluid
speed is larger than the norm of the macroscopic fluid veloc-
ity. In fact, we have v*=�v where v= �v�. In other words, the
ratio between the average of the microscopic fluid speed and
the norm of the macroscopic fluid velocity is the tortuosity.

Analogously, we denote by u the macroscopic velocity
of the fine particles, i.e., u is the average of the velocities of
the fine particles in regions much larger than the pores but
much smaller than the material size, and we denote by u* the
average speed of the fine particles. We assume that we also
have u*=�u, where u= �u�.

Note that these velocities and speeds are, in general,
functions of the spatial position x and time t, i.e., v=v�x , t�,
u=u�x , t�, v*=v*�x , t�, and u*=u*�x , t�.

Our goal is to find u as a function of v. We assume,
naturally, that u has the same direction as v. We also assume
that the typical path a particle follows is as in Fig. 1 with all
the segments having the same length �. We also assume that
each time a particle reaches the end of one of the segments,
it collides with the pore wall and loses all its momentum.
Under these modeling conditions, Eq. �2� provides a relation-
ship between the speeds u* and v*, where � should be taken
as a typical pore size. Thus, given that v*=�v and u*=�u, we
have

1 =
v
	
�	

u
− �1 − e−	/u�� where 	 =

��

�
=

9

2

��

��prp
2 , �3�

where as before v= �v� and u= �u�. Equation �3� gives, im-
plicitly, the norm of the average particle velocity u as a func-
tion of the norm of the macroscopic fluid velocity v. A plot
of u /	 versus v /	 is shown in Fig. 2.

The main properties of u as a function of v are �1� 0

u
v for all v�0, �2� u is an increasing function of v, �3�
u
v for v�	, and �4� u
�	v /2 for v	. As an example,
we will now use Eq. �3� to model particle transport and pos-
sible clogging in a two-dimensional model of a well produc-
tion. Assume that our two-dimensional porous medium oc-
cupies the region of the plane �= �Ri� �x�, where Ri is a

constant. Note that ��x��Ri is the space occupied by the
well. We will denote by �=��x� the porosity, i.e., the local
volume fraction of void or pore space. Note that ��x� is
independent of time. We denote by z=z�x , t� the volume
fraction of fine particles. Note that the volume fraction of
fluid is ��x�−z�x , t�. We refer to z as the concentration of
particles. Since we assume that both particles and fluid are
incompressible, the equation of mass conservation becomes
� · �v��−z�+uz�=0, where �· is the divergence operator. We
assume the small concentration of particle limit, i.e., z��,
and that � is independent of x. Thus, mass conservation
reduces to � ·v=0. We also assume that fluid flows at a
known constant rate and with circular symmetry toward the
inner boundary ��x�=Ri. Thus, introducing the radial vari-
able r= �x� we have that � ·v=0 implies that the velocity v is
of the form v=−vx /r with v=A /r, where A is a known posi-
tive constant. Note that 2��A is the rate at which fluid exits
the medium through the inner boundary �the well�.

The macroscopic fine particle velocity will also have a
similar form as the macroscopic fluid velocity v, i.e.,

u = − u
x

r
, �4�

where u and v are related by Eq. �3� and thus u=u�r�. Since
we now have v in terms of r, Eq. �3� gives us a relation
between u and r, namely,

	r

A
=

	

u
− �1 − e−	/u� , �5�

where 	 was defined in Eq. �3�. The main properties of u as
a function of r are as follows: �1� u is a decreasing function
of r, �2� u
A /r for rA /	, and �3� u
�	A / �2r� for r
�A /	.

Since the concentration of fine particles z is convected
with the macroscopic velocity of fine particles u, and given
the circular symmetry of our problem, we have the following
conservation equation:

�z

�t
−

1

r

��ruz�
�r

= 0, �6�

where u=u�r� is a function of r given implicitly in Eq. �5�.
We remark that the dependence of u=u�r� as a function of r
was obtained under the assumption that z is small, i.e., z
��. Nevertheless, we will extend the use of Eq. �5� beyond
the restriction z�� to add clarity to our exposition while
keeping the physical effects we are interested in modeling.
Note that the evolution of the concentration of fine particles
z�r , t� is completely determined by Eqs. �5� and �6� once the
initial conditions are specified, i.e., we need to know z�r ,0�.

In Fig. 3 we show an example of the time evolution of
the concentration of fine particles z. We plotted z versus r /Ri
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FIG. 1. The small segments form a typical path traveled by an element of
fluid in a porous medium.
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FIG. 2. Plot of u /	 vs v /	. Both plots correspond to the same curve. They
are just in different scales.
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for four fixed values of t: t=0, t=Ri /	, t=5Ri /	, and
t=+�. The initial condition was z�r ,0�=0.1. Note that z�r , t�
is defined only for r�Ri.

In the rest of this letter we assume that the initial condi-
tions are homogeneous, i.e., z�r ,0�=z0 for all r, where z0 is a
constant. Our model predicts that the concentration of par-
ticles will increase with time, but it will remain bounded.
The concentration will not remain homogeneous. For any
positive time, the concentration of particles is a decreasing
function of the distance to the well.

It is of interest to predict if clogging occurs. Let us now
introduce a simple criterion for clogging in our modeling
context. Regions of the medium clog if and when the con-
centrations of fine particles z in those regions exceed a cer-
tain critical value z�. Thus, in our example, if clogging oc-
curs, it will happen at the boundary between the medium and
the well, i.e., at r=Ri. Once this ring is clogged, there is no
more flow through the medium.

Clogging may or may not occur. The outcome will de-
pend on the parameters of the system. In fact, solving our
model shows the following.

Observation 1. Let s� be the root of 	Ri /A=s�
−1− �1

−e−1/s��. The medium clogs if and only if 1−s��1−e−1/s��

z0 /z*.

In Fig. 4 we display the regions in the parameter plane
A / �	Ri� versus z* /z0 where clogging does and does not oc-

cur. The parameter z* /z0 determines how many times the
concentration of fine particles needs to increase for the me-
dium to plug. Note that A /Ri is the macroscopic fluid veloc-
ity v at the inner boundary and 	, defined in Eq. �3�, is a
velocity that depends on microscopic or pore-scale param-
eters of the system. Note that 	 indicates when the difference
between the macroscopic fluid velocity v and macroscopic
velocity of fine particles u is noticeable. More precisely, u

v if and only if v�	.

In summary, we have developed a simple mathematical
model that provides a relation between the average fluid ve-
locity and the average velocity of the transported particles, in
the parameter regime of relative large fluid velocities and
particles size. We have shown the parameter regime where
these physical effects are important. We have also shown that
these effects may lead to the clogging of porous media if the
fluid velocity field is not homogeneous, which is the case of
velocity fields near production wells.
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FIG. 3. Plot of z vs r /Ri for four fixed values of t: t=0, t=Ri /	, t=5Ri /	,
and t=+�. z increases with t but remains bounded.
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FIG. 4. Regions in the parameter plane A / �	Ri� vs z
*

/z0 where clogging
does and does not occur. Both plots correspond to the same regions. They
are just in different scales.
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