Final - MATH 4317

Last name:

First name:

Problems you want graded: (Select exactly 4)

Each problem is worth 5 points

Problem 1: Prove that if $f : [a, b] \to \mathbb{R}$ is increasing then $\int_a^b f(x) dx$ exists.

Problem 2: Prove that a differentiable real-valued function on \mathbb{R} with bounded derivative is uniformly continuous.

Problem 3: Let f, f_1, f_2, f_3, \cdots be continuous real-valued functions on a compact metric space E, with $f(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in E$. Prove that, if $f_1(x) \leq f_2(x) \leq f_3(x) \cdots$ for all $x \in E$, then the sequence f_1, f_2, f_3, \cdots converges uniformly.

Problem 4: Let *E* be metric space with more than one point. Let $x_0 \in E$. Assume $\{x_0\}$ is open. What can you say about the connectivity of *E*?

Problem 5: Let $f : \mathbb{R} \to \mathbb{R}$ be a function which is strictly increasing and onto. Prove that f and f^{-1} are continuous. **Problem 6:** Show that if $f: E \to E'$ and $g: E' \to E''$ are both uniformly continuous, so is the composition $gof: E \to E''$