Extra credit problems - MATH 4317

No collaboration. Show all your work. submit the problems on the day they are due. The problems are due on different days.

Section AU or AG?:

Last name:

First name:

Problem 1 (due Monday 10/23): Let E be a metric space. Let A and B be two closed sets in E. Assume A and B do not intersect. Prove that there exist two open sets U and V such that: 1) A is included in U, 2) B is included in V and 3) U and V do not intersect.

Problem 2 (due Wednesday 10/25): Let *E* be a metric space. Let $a \in E$. For each positive integer *k*, let $a_n^{(k)}$ be a sequence in *E* that converges to *a* as $n \to \infty$. Let $x_n = a_n^{(n)}$. Question: Does x_n converge? If yes, prove it. If no, give a counterexample.

Problem 3 (due friday 10/27): In \mathbb{R}^n , bounded and closed implies compact. Give an example of a complete metric space E and a set S in E that is bounded and closed, but not compact. Prove your claims.

Problem 4 (due Monday 10/30): A metric space E is said to be locally connected if for all $x \in E$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x)$ is connected. Show that if E is locally connected, then E is the disjoint union of open connected sets.