
CHAPTER I 1  

The Real Number System 

The real numbers are basic to analysis, so we must 
have a clear idea of what they are. It is possible to con- 
struct the real number system in an entirely rigorous 
manner, starting from careful statements of a few of 
the basic principles of set theory, * but we do not follow 
this approach here for two reasons. One is that the 
detailed construction of the real numbers, while not 
very difficult, is time-consuming and fits more properly 
into a course on the foundations of arithmetic, and the 
other reason is that we already “know” the real num- 
bers and would like to get down to business. On the 
other hand we have to be sure of what we are doing. 
Our procedure in this book is therefore to assume cer- 
tain basic properties (or axioms) of the real number 
system, all of which are in complete agreement with 
our intuition and all of which can be proved easily in 
the course of any rigorous construction of the system. 
We then sketch how most of the familiar properties of 
the real numbers are consequences of the basic prop- 
erties assumed and how these properties actually com- 
pletely determine the real numbers. The rest of the 
course will be built on this foundation. 

* The standard procedure for constructing the real numbers is as 
follows: One first uses basic set theory to define the natural num- 
bers (1, 2,3, . . . ) (which, to begin with, are merely a set with 
an order relation), then one defines the addition and multiplica- 
tion of natural numbers and shows that these operations satisfy 
the familiar rules of algebra. Using the natural numbers, one then 
defines the set of integers (0, f l ,  f 2 ,  . . . ) and extends the o p  
erations of addition and multiplication to all the integers, again 
verifying the rules of algebra. From the integers one next obtains 
the rational numbers, or fractions. Finally, from the rational 
numbers one constructs the real numbers, the basic idea in this 
last step being that a real number is something that can be a p  
proximated arbitrarily closely by rational numbers. (The mann- 
facture of the real numbers may be witnessed in E. Landau’s 
Foundations of Analysis.) 
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5 1.  THE FIELD PROPERTIES. 

We define the real number system to be a set R together with an ordered 
pair of functions from R X R into R that satisfy the seven properties listed 
in this and the succeeding two sections of this chapter. The elements of R 
are called real numbers,  or just numbers. The two functions are called 
addition and multiplication, and they make correspond to an element 
(a, b) E R X R specific elements of R that are denoted by a + b and a - b 
respectively. 

We speak of the real number system, rather than a real number system, 
because i t  will be shown a t  the end of this chapter that the listed properties 
completely determine the real numbers, in the sense that if we have two 
systems which satisfy our properties then the two underlying sets R can 
be put into a unique one-one correspondence in such a way that the func- 
tions + and - agree. Thus the basic assumption made in this chapter is 
that  a system of real numbers exists. 

The five properties listed in this section are called the field properties 
because of the mathematical convention calling a field any set, together 
with two functions + and - , satisfying these properties. They express the 
fact that the real numbers are a field. 

PROPERTY I. 

PROPERTY 11. 

PROPERTY 111. 

PROPERTY IV. 

PROPERTY V. 

(COMMUTATIVITY). 
a + b = b + a a n d  a - b = b - a .  

(ASSOCIATIVITY). 
(a+ b) + c = a + (6  + c )  and (a b) - c = a - (b  - c ) .  

(DISTRIBUTIVITY). 
a . ( b + c )  = a * b + a . c .  

(EXISTENCE OF NEUTRAL ELEMENTS). There are distinct 
elements 0 and 1 of R such that for all a E R we have 
a +  0 = a and a - 1 = a. 

(EXISTENCE OF ADDITIVE AND MULTIPLICATIVE INVERSES). 

For a n y  a E R there i s  a n  element of R, denoted -a, such 
that a + ( -a )  = 0,  and for a n y  nonzero a E R there is  
an element of R, denoted a+, such that a a-l = 1. 

For every a, b E R, we have 

For every a, b, c E R, we have 

For every a, b, c E R, we have 

Most of the rules of elementary algebra can be justified by these five 
properties of the real number system. The main consequences of the field 
properties are given in paragraphs F 1 through F 10 immediately below, 
together with brief demonstrations. We shall employ the common nota- 
tional conventions of elementary algebra when no confusion is possible. 
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For example, we often write ab for a - b. One such convention is already 
implicit in the statement of the distributive property (Property I11 above), 
where the expression a - b + a - c is meaningless unless we know the order 
in which the various operations are to be performed, that is how parentheses 
should be inserted; by a - b + a . c we of course mean (a  - b) + (a  - c). 

F 1. 

F 2. 

F 3. 

In a sum or product of several real numbers parentheses can be 
omitted. That is, the way parentheses are inserted is immaterial. 
Thus if a,  b, c,  d E R, the expression a + b + c + d may be defined 
to bethecommon valueof (a  + (b + c ) )  + d = ( ( a  + b) + c )  + d = 
(a  + b) + (c + d )  = a + (b  + (c + d ) )  = - - . ;  that these expres- 
sions with parentheses indeed possess a common value can be shown 
by repeated application of the associative property. The general fact 
(with perhaps more than four summands or factors) can be proved 
by starting with any meaningful expression involving elements of R, 
parentheses, and several +'s or several s's, and repeatedly shoving 
as many parentheses as possible all the way to the left, always ending 
up with an expression of the type ( ( a  + b) + c )  + d. 

In a sum or product of several real numbers the order of the terms is 
immaterial. For example 

u . ~ * c =  b .  a .  c = c .  b .  a = .... 
This is shown by repeated application of the commutative property 
(together with F 1). 

For any a, b E R the equation x + a = b has one and only one solu- 
tion. For if z E R is such that z + a = b, then z = z + 0 = 

is the only possible solution; that this is indeed a solution is immedi- 
ate. One consequence is that the element 0 of Property IV is unique; 
another is that for any a E R, the element -a of Property V is 
unique. 

x + ( u + ( - a ) )  = ( z + u ) + ( - u ) = ~ + ( - u ) ,  SO z = b + ( - a )  

For convenience, instead of b + ( -a )  one usually writes b -a. (This is a 
definition of the symbol" -"between two elements of R.) Thus -a = 0 -a. 

We take the opportunity to reiterate here the important role of con- 
vention. a + b + c has been defined (and by F 1 there is only one reason- 
able way to define it), but we have not yet defined a - b - c. Of course 
by the latter expression we understand (a - b) - c, but it is important to 
realize that this is merely convention, and reading aloud the words ' la  
minus b minus c" with a sufficient pause after the first "minus" points out 
that our convention could equally well have defined a - b - c to be 
a - (b  - c). In this connection note the absence of any standard conven- 
tion for a + b + c. In a similar connection, note that ab" could be taken 
to mean (ab). if it were not conventionally taken to mean a(*'). As stated 
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above we use all the ordinary notational conventions when no confusion 
can result. For example, without further ado we shall interpret an expres- 
sion like log ab to mean log (ab) and not (log a)b, ab-' does not mean (ab)-', 
etc. 

F4. For any a, b E R, with a # 0, the equation xu = b has one and only 
one solution. I n  fact from za = b follows z = zaa-l = ba-l, and from 
z = ba-' follows xu = b. Thus the element 1 of Property IV is 
unique and, given any a E R, a # 0, the element a-l of Property V 
is unique. 

For a, b E R, a # 0, we define b/a,  in accord with convention, to be 
b - a-l. In  particular, a-l = l/a. 

F5. For any a E R we have a - 0 = 0. This is true since a * 0 + a * 0 = 
a - (0 + 0)  = a - 0 = a * 0 + 0, so that a - 0 and 0 are both solutions 
of the equation x + a - 0 = a - 0, hence equal, by F 3. From this i t  
follows immediately that if a product of several elements of R is 0 
then one of the factors must be 0: for if ah = 0 and a # 0 we can 
multiply bot)h sides by a-l to get b = 0. Hence the illegitimacy of 
division by zero. 

F 6. - ( -a)  = a for any a E R. For both - ( -a)  and a are solutions of 
the equation z + (-a) = 0, hence equal, by F 3. 

F 7. (a+)+ = a for any rlonzero a E R. I n  fact since a - a-l = 1, by F 5 
we know that a-l # 0, so (u-l)-l exists, and F 4 implies that (a-l)-l 
and a are equal, since both are solutions of the equation x - a-; = 1. 

F8. -(a + b) = (-a) + ( - b )  for all a,  b E R. For both are solutions 
of the equation z + (a  + b) = 0. 

F9. (ab)-' = a-lb-' if a, b are nonzero elements of R. For ab # 0 by 
F 5, so (ab)-l exists, and both (ab)-l and a - W  are solutions of the 
equation z(ab)  = 1. 

The usual rules for operating with fractions follow easily from F 9 :  

ad) (bd)-' + (bc) (bd)-l a c a d b c  
b d bd bd 
-+-=-+-=( 

ad + bc 
= (ad + bc)(bd)-' = ~ bd ' 
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F10. -a = (-1)s afor all a E R .  For (-1) - a + a  = a - ((-1) + 1) = 
a - 0 = 0, so that (-1) - a and -a are both solutions of the equa- 
tion x + a = 0, hence are equal. Two immediate consequences 
are a - ( -b)  = a - (-1) - b = (-1) - a .  b = ( -a )  b = -ab and 
(-a) * ( -b)  = - ( a .  ( - b ) )  = -(-ab) = ab. 

Notice that all five field properties of the real numbers, and therefore 
all consequences of them, are satisfied by the rational numbers, or by the 
complex numbers. That is, the rational numbers and the complex numbers 
are also fields. In fact there exist fields with only a finite number of elements, 
the simplest one being a field with just the two elements 0 and 1. To describe 
the real numbers completely, more properties are needed. 

$2. ORDER. 

The order property of the real number system is the following: 

PROPERTY VI. There is  a subset R+ of R such that 

(2) for any a E R, one and only one of the following state- 
(1) i f  a, b E R+, then u + b, u * b E R+ 

ments i s  true 
a E R +  
a = O  

-a E R+. 

The elements a E R such that a E R+ will of course be called positive, 
those such that -a E R+ negative. From the above property of R+ we 
shall deduce all the usual rules for working with inequalities. 

To be able to express the consequences of Property VI most con- 
veniently we introduce the relations “>” and “<”. For a, b E R, either 
of the expressions 

a > b  or b < a  

(read respectively as “ a  is greater than b” and “b is less than a”) will 
mean that a - b E R+. Either of the expressions 

a > b  or b l a  

will mean that a > b or a = b. 

and only if a < 0. 
Clearly a E R+ if and only if a > 0. An element a E R is negative if 

The following are the consequences of the order property. 

0 1. (Trichotomy). 
statements is true: 

If a, b E R then one and only one of the following 

a > b  
a = b  
a < b. 
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For if we apply part (2) of the order property to the number a - b 
then exactly one of three possibilities holds, a - b E R+, a - b = 0, 
or b - a E R+, which are the three cases of the assertion 0 1. 

0 2. (Transitivity). 
a - b E R+ and b - c E R+; it therefore follows that 

If a > b and b > c then a > c. For we are given 

u - c = (a - b) + (b  - C )  E R+, $0 u > C. 

0 3 .  If a > b and c 2 d then a + c > b + d.  In fact, the hypotheses 
mean a - b E R + ,  c - d  ER+U (01, and as a consequence 
(a + c) - (b  + d )  = (a  - b)  + (c  - d)  E R,, proving the assertion. 

0 4 .  If a > b > 0 (meaning that a > b and b > 0) and c 2 d > 0, then 
ac > bd. For a - b E R+ and c E R+, so ac - bc = (a - b)c E R+, 
and similarly c - d E R+ U {O) and b E R+ together imply that 
bc - bd E R+ U {O) ; it  necessarily follows that 
ac - bd = (ac - bc) + (bc - bd) E R+, that is ac > bd. 

Note that the assumptions that b and d are positive are essential; the 
assertion 04 does not hold, for example, with a = 1,  b = -1 ,  c = 2,  
d = -3. 

0 5. The following rules of sign for adding and multiplying real numbers 
hold : 

(positive number) + (positive number) = (positive number) 
(negative number) + (negative number) = (negative number) 
(positive number) - (positive number) = (positive number) 
(positive number) - (negative number) = (negative number) 
(negative number) - (negative number) = (positive number). 

These are immediate from F 10 and Property VI. 

0 6 .  For any a E R we have a2 2 0, with the equality holding only if 
a = 0; more generally the sum of the squares of several elements of 
R is always greater than or equal to zero, with equality only if all 
the elements in question are zero. For by 0 5, the statement a # 0 
implies a2 > 0, and a sum of positive elements is positive. Note the 
special consequence 1 = l2 > 0. 

0 7 .  If a > 0, then l / a  > 0. In fact a - ( l / a )  = 1 > 0, which would 
contradict the rules of sign if we had l / a  5 0. 

0 8 .  If a > b > 0 ,  then l / a  < l /b .  For ab > 0, hence (ab)-' > 0, so 
(ab)-la > (ab)-lb, which simplifies to l / b  > l / a .  
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0 9. We now show how the computational rules of elementary arithmetic 
work out as consequences of our assumptions. Let us make the defi- 
nitions 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, etc., and let us define the 
natural numbers to be the set (1, 2, 3, . . . ) .  Since 1 > 0 it follows 
that 0 < 1 < 2 < 3 < . . . . The set of natural numbers is ordered 
exactly as we would like it to be-in particular, the natural numbers 
have the following properties: for any natural numbers a, b, exactly 
one of the statements a < b, a = b, b < a holds; if a, b, c are natural 
numbers and a < b and b < c then also a < c; any natural number 
has an  immediate successor (a least natural number that is greater 
than it) ; different natural numbers have different immediate suc- 
cessors; and there is a natural number 1 with the property that any 
set of natural numbers that includes 1 and with each element also 
its immediate successor consists of all natural numbers. For any 
natural number n, n is the sum of a set of 1’s that is in one-one 
correspondence with the elements of the set (1, 2, 3, . . . , n). This 
implies that in whatever order we count off the elements of a set of 
n objects (that is, a set in one-one correspondence with the set 
{ 1, 2,3, . . . , n ) )  we arrive at the final count n, and if a proper subset 
of a set of n objects has m objects, then m < n. The usual rules for 
adding natural numbers come from such computations as 

2 + 3  = (1 + 1) + (1 + 1 +  1) = 1 + 1 + 1 +  1 + 1 =  5, 

while the rules for multiplication follow from the fact that  sums 
of equal terms may be written as products; for example, for any 
a E R  we have a + a + a = ( l + I + l ) - a = 3 a .  Thus 3 . 4 =  
4 + 4 + 4 = 12, so we can verify the entire multiplication table, as 
high as we care to go. The integers, that is the subset (0 ,  f l ,  
f3, . .,. } of R, are also ordered in the correct way . . . < -2 < 
-1 < 0 < 1 < 2 < . . .. It is easy to check that the integers add 
according to the ordinary rules; that they multiply in the usual way 
is implied by F 10 and the corresponding fact for the natural num- 
bers. The rational numbers, that  is the elements of R which can be 
written a/b,  with a, b integers and b # 0, are also ordered in the 
usual way; indeed the order relation of two rational numbers can be 
determined by writing the two numbers with a positive common 
denominator and comparing the numerators. Addition and multi- 
plication of rational numbers are also determined by the same opera- 
tions for the integers. Thus the rational numbers, a certain subset 
of R, have all the arithmetic and order properties with which we are 
familiar. 

Here is as good a place as any to introduce into our logical discussion 
of the real number system the notion of exponentiation with integral 
exponents. If a E R and n is some positive integer we define an to be 
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a - a - a . . . a (n times), and if a # 0 we define uo = 1, a-" = l/an. From 
these definitions we immediately derive the usual rules of exponentiation, 
in particular 

a m .  a n  = am+" 
(am)" = a m n  

(ab)" = a"b" 

The definition of the absolute value of a real number is most con- 
veniently introduced at this point: if a € R, the absolute value of a, denoted 
l a [ ,  is given by 

( a ] =  a if a > O ,  
lal= O if a = O ,  
l a ( =  --a if a<O.  

The absolute value has the following properties : 
(1) la1 2 0 for all a E R, and la1 = 0 if and only if a = 0 
(2) lab1 = la1 *Ibl for all a, b E R 
(3) laI2 = u2 for all a E R 
(4) la + bl<_ la( + J b l  for all a, b E R 
(5)  la - bl 2 I I a I - I b I (  for all a, b E R. 

The first three properties above are trivial consequences of the defini- 
tion of I a ] .  To prove (4) note first that 

f a  5 la1 

f b I I b I ,  

* ( a + b )  I l a l + l h l ,  

(meaning that a 5 la1 and --a 5 l a / )  and 

so adding gives 

or 

l a + b l  I l a l+ lb l .  

la - b l 2  la1 - Ib l .  

To prove ( 5 ) ,  note that l a /  = I (a - b)  + b /  I la - 61 + ( b ( ,  so that 

Interchanging a and b, 

la  - b l 2  I b l  - ] G I ,  

end the last two inequalitics combine into (5) .  
It is useful to note that repeated application of (4) gives 

ia1+az+ . . *  + U , I I I U l l + I U Z I +  . . .  4-Ianl. 
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We also note the trivial but very useful fact that if x, a, e E R, then 

Iz  - a (  < e 

if and only if 

a - e < z  < a +  e. 

For ( z  - a1 < e is precisely equivalent to x - a < e and -(x - a) < e, 
or - e  < x - a  < e ,  which in turn is equivalent to a - e < x < a + e. 

7 - c v - c -  
I I I 
I I I 

a - - c  a a + €  

FIGURE 5. The points 2 such that Iz - a1 < e. 

1 
I I 

At the end of the previous section a number of other systems were 
given which satisfy the first five properties of the real number system. The 
order property excludes two of the systems given there: the field consisting 
of just the two elements 0 and 1 (since then 1 + 1 = 0, contradicting 
1 + 1 > 0) ,  and the complex numbers (since any number must have a 
nonnegative square). But the rational numbers satisfy all the properties 
given so far. Since it is known that there exist real numbers which are not 
rational (this will be proved shortly), still more properties are needed to 
describe the real numbers completely. 

53. THE LEAST UPPER BOUND PROPERTY. 

To introduce the last fundamental property of the real number system 
we need the following concepts. If S C R, then an upper bound for the set S 
is a number a E R such that s 5 a for each s E S. If the set S has an upper 
bound, we say that S is bounded from above. We call a real number y a 
least upper bound of the set S if 

and 
(1) y is an upper bound for S 

(2)  if a is any upper bound for 8, then y 5 a. 
From this definition it follows that two least upper bounds of a set 

S C R must be less than or equal to each other, hence equal. Thus a set 
S C R can have at most one least upper bound and we may speak of the 
least upper bound of S (if one exists). Note also the following important 
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fact: if y is the least upper bound of S and x E R, x < y ,  then there exists 
an element s E S such that x < s. 

A nonempty finite subset S C R always has a least upper bound; in 
this case the least upper bound is simply the greatest element of S. More 
generally any subset S C R that has a greatest element (usually denoted 
max S )  has max S as a least upper bound. But an infinite subset of R need 
not have a least upper bound, for example, R itself has no upper bound 
a t  all. Furthermore, if a subset S of R has a least upper bound it does not 
necessarily follow that this least upper bound is in S ;  for example, if S is 
the set of all negative numbers then S has no greatest element, but any 
a >_ 0 is an upper bound of S and zero (a number not in S )  is the least upper 
bound of 8. 

The last axiom for the real number system is the following, which gives 
a further condition on the ordering of Property VI. 

PROPERTY VII. (LEAST UPPER BOUND PROPERTY). A nonempty set of 
real numbers that is bounded from above has a least upper 
bound. 

If we look a t  the real numbers geometrically, imagining them plotted 
on a straight line in the usual manner of analytic geometry, Property VII 
becomes quite plausible. For if S C R is nonempty and bounded from 
above then either S has a greatest element or, if we try to pick a point in S 
as far to the right as possible, we can find a point in S such that no point 
in S is more than a distance of one unit to the right of the chosen point. 
Then we can pick a point in S farther to the right than the first chosen 
point and such that no point in S is more than one-half unit to the right 
of this second chosen point, then a point of S still farther to the right 
such that no point of S is more than one-third unit to the right of the last 
chosen point, etc. It is intuitively clear that the sequence of chosen points 
in S must “gang up” toward some point of R, and this last point will be 
the least upper bound of S. (See Figure 6.) 

Another way to justify Property VII in our minds is to look upon the 
real numbers as represented by infinite decimals, i.e. , symbols of the form 

(integer) + .alaza3. . . , 
where each of the symbols al, az, a3, . . . is one of the integers 0, 1 , 2 ,  . . . , 9 ,  
with the symbols <, > , +, * being interpreted for infinite decimals in the 
standard way. (Note that any terminating decimal can be considered an 

I I I I I i i i m  

-1 0 1 2 3  

FIGURE 6. A sequence of points in R ganging up toward a least upper bound. 
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infinite decimal by adding an infinite string of zeros.) If S is a nonempty 
set of infinite decimals that is bounded from above, then we can find an 
element of S whose integral part is maximal, then an element of S having 
the same integral part and with a1 maximal, then an element of S having 
the same integral part and same al with a2 maximal, and we can continue 
this process indefinitely, ending up with an infinite decimal (which may 
or may not be in S )  which is clearly a least upper bound of S.* 

The least upper bound of a subset S of R will be denoted 1.u.b. S ;  
another common notation is sup S (sup standing for the Latin supremum). 
Property VII says that 1.u.b. S exists whenever S C R is nonempty and 
bounded from above. Conversely, if S C R and 1.u.b. S exists, then S must 
be nonempty (for any real number is an upper bound for the empty set and 
there is no least real number) and bounded from above. 

Analogous to the above there are the notions of lower bound and 
greatest lower bound: a E R is a lower bound for the subset S C R if a 2 s 
for each s E S ,  and a is a grea.test lower bound of S if a is a lower bound of S 
and there exists no larger one. S is called bounded from below if i t  has a 
lower bound. It follows from Property VII that every set S of real numbers 
that is nonempty and bounded from below has a greatest lower bound: 
as a matter of fact, a set S C R is bounded from below if and only if the set 
8‘ = (5 : --z E S) is bounded from above, and if S is nonempty and 
bounded from below then -1.u.b. S’ is the greatest lower bound of S. The 
greatest lower bound of a subset S of R is denoted g.1.b. S ;  another nota- 
tion is inf S (inf abbreviating the Latin injimum). If S has a smallest ele- 
ment (for example, if S is finite and nonempty) then g.1.b. S is simply this 
smallest element, often denoted min S. 

We proceed to draw some consequences of Property VII. Among other 
things we shall show that the real numbers are not very far from the 
rational numbers, in the sense that any real number may be “approximated 
as closely as we wish” by rational numbers. The way to view the situation 
is that the rational numbers are in many ways very nice, but there are 
certain “gaps” among them that may prevent us from doing all the things 
we would like to do with numbers, such as solving equations (e.g., extracting 
roots), or measuring geometric objects, and the introduction of the real 
numbers that are not rational amounts to closing the gaps. 

Here are the consequences of the least upper bound property: 

* Let us remark here that once the set of integers is known, together with their addition 
and multiplication, it is possible to construct the real number system by defining real 
numbers by means of infinite decimals. This is in fact the way real numbers are usually 
introduced in elementary arithmetic, and we know how easy it is to compute with deci- 
mals. But there are a few inconveniences in this method stemming from the fact that 
8ome numbers have more than one decimal representation (e.g., ,999 . . . = 1.000 . . .). 
There is also the esthetic inconvenience of giving a preferred status to the number 10- 
almost a biological accident. In any case we shall discuss later in this section how the 
seven properties of real numbers imply that they can indeed be represented by infinite 
decimals, thus completing the circle with elementary arithmetic. 
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LUB 1. For any real number x ,  there is an integer n such that n > z. 
(In other words, there exist arbitrarily large integers.) To prove 
this, assume we have a real number x for which the assertion is 
wrong. Then n 5 x for each integer n, so that the set of integers 
is bounded from above. Since the set of integers is nonempty 
it has a least upper bound, say a. But for any integer n, n + 1 
is also an integer, so n + 1 5 a and thus n 2 a - 1 ,  showing 
that a - 1 is also an upper bound for the set of integers. $' Lince 
a - 1 < a, a is not a least upper bound. This is a contradiction. 

LUB 2. For any positive real number t there exists an integer n such 
that l / n  < E. (In other words, there are arbitrarily small posi- 
tive rational numbers.) For the proof it suffices to choose an 
integer n > l / e ,  which is possible by LUB 1 ,  then use 0 8, 
which is permissible since by 0 7 we have l / e  > 0. 

LUB 3. For any x E R there is an integer n such that n 5 x < n + 1. 
To prove this, choose an integer N > I x I , so that -N < x < N .  
The integers from -N to N form the finite set { - N ,  -N + 1 ,  
. . . , 0 , l  , . . . , N 1 and all we need do is take n to be the greatest 
of these that is less than or equal to 2. 

For any z E R and positive integer N ,  there is an integer n 
such that 

LUB 4. 

n n + l  - < x < -  N -  N .  
To show this we merely have to apply LUB3 to the number 
Nx, getting an integer n such that n 5 Nx < n + 1 .  

If x ,  t E R, e > 0, then there exists a rational number T such 
that Ix - rI < c. (In other words, a real number may be 
approximated as closely as we wish by a rational number.) To 
prove this, use LUBZ to find a positive integer N such that 
1/N < E, then use LUB4 to find an integer n such that 
n/N 5 2 < (n  + l ) / N .  Then 0 5 z - n/N < 1/N < t, so 
l x - n / N I < t .  

LUB 5. 

We now discuss the decimal representation of real numbers. First con- 
sider finite decimals. If a,, is any integer, n any positive integer, and 
ul, a2, . . . , a, any integers chosen from among 0, 1 ,2 ,  . . . , 9, the symbol 

ao.a1 a2 . . . a, 
will mean, as usual, the rational number 
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If m is a positive integer less than n, then 

ao.a1. . .arn I ao.a1. . .a, = ao.a1. . .a, + &+I * lO-'m+1) + * * * + a, 10" 
I ao.a1.. .a, + 9 * lO-("r+l) + * - *  + 9 - lo-". 

If we add 10-n to this last number a lot of cancellation occurs, resulting in 

ao.a1. . .arn 5 ao.a1. . . a, < &.Ul. . .a, + lo-. 

This last inequality is a t  the base of most rounding-off procedures in 
approximate calculations and in addition shows that two numbers in the 
above decimal form are equal only if (except for the possible addition of a 
number of zeros to the right, which doesn't change the value of the symbol) 
they have the same digits in corresponding places. It also enables us to tell 
at a glance which of two numbers in the given form is larger. The ordinary 
rules for adding and multiplying numbers in this form are clearly legitimate. 

By an injinite decimal we mean a formal expression 

Uo.UiUzUa. . . 
(this is just another way of writing a sequence) where a0 is an integer and 
each of al, az, as, . . . is one of the integers 0, 1, . . ., 9. The set 
(ao.a~. . .a, : n = positive integer] is nonempty and bounded from above 
(for any integer m > 0, ao.al.. .am + lo-" is an upper bound) hence has a 
least upper bound. The symbol ao.a~a2a~. . . is called a decimal expansion for 
this least upper bound and we say that the least upper bound is represented 
by the infinite decimal. Thus every infinite decimal is a decimal expansion 
for a definite real number and we may use the infinite decimal itself as a 
symbol for the number. Thus 

UO.UIUZU~. . . = 1.u.b. (%.al. . .a, : n = positive integer], 

and for any positive integer n we have the inequality 

ao.a1. . . a, I ao.ala2aa. . . I ao.a1. . . a, + lo-". 
This enables us to tell immediately which of two infinite decimals repre- 
sents the larger real number. Note that two different infinite decimals 
may be decimal expansions for the same real number, for example 
5.1399999.. . = 5.1400000.. . , but the last inequality shows that different 
infinite decimals are decimal expansions for the same real number only in 
this case, that is when we can get one infinite decimal from the other by 
replacing one of the digits 0, 1, . . . , 8  followed by an infinite sequence of 
nines by the next higher digit followed by a sequence of zeros. 

Any real number is represented by a t  least one infinite decimal. To 
see this, apply LUB 4 to the case N = lom, where m is any positive integer: 
we get a finite decimal ~ 0 . ~ 1 .  . .a, such that 

ao.a1. . .a, I 2 < %.Ul. . .a, + lo-". 



28 11. T H E  REAL NUMBER SYSTEM 

If we try doing this for m + 1 in place of m, then a. and the digits al, . . . , a, 
will not change, and we simply get another digit a,+l. Letting m get larger 
and larger, we get more and more digits of an infinite decimal, and this is 
our desired decimal expansion for z. Note that the addition or multiplica- 
tion of two infinite decimals goes according to the usual rules: we round off 
each decimal and add or multiply the corresponding finite decimals to get 
a decimal approximation of the desired sum or product. We obtain as many 
digits as we wish of the decimal expansion of the sum or product by rounding 
off the given infinite decimals to a sufficiently large number of places. 

Using decimal expansions of real numbers, i t  is very easy to exhibit 
real numbers which are not rational. One such number is 

.101001000100001oO0001... . 
Multiply this by any positive integer and one gets a number which is not 
an  integer, so this number cannot be rational. 

84. THE EXISTENCE OF SQUARE ROOTS. 

It is convenient to prove here a special result, even though this can be 
derived as a consequence of a much more general theorem to be proved later. 

A square root of a given number is a number whose square is the given 
number. Since the square of any nonzero number is positive, only non- 
negative numbers can have square roots. The number zero has one square 
root, which is zero itself. 

Proposition. Every positive number has a unique positive square root. 

If 0 < z1 < z2 then 212 < 222. That is, bigger positive numbers have 
bigger squares. Thus any given real number can have at most one positive 
square root. It remains to show that if a E R, a > 0, then a has at least 
one positive square root. For this purpose consider the set 

S =  ( z E R : z > O ,  z 2 < a } .  

This set is nonempty, since 0 E S ,  and bounded from above, since if 
z > max (a, I ]  we have z2 = z - z > z - 1 = z > a. Hence y = 1.u.b. S 
exists. We proceed to show that y2 = a. First, y > 0, for min (1, a )  E S ,  
since (min (1, a])2 5 min { 1, a )  - 1 = min ( 1, a )  < a. Next, for any e such 
t h a t O < e < y w e  h a v e O < y - e < y < y + e ,  so 

(Y - E)2 < Y2 < (Y + eY, 
since bigger positive numbers have bigger squares. By the definition of y 
there are numbers greater than y - e in S ,  but y + e 4 S.  Again using the 
fact that bigger positive numbers have bigger squares, we get 

(y - e)2 < a < (y + e)2. 
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Hence 

(y - €)2 - (y + €)2 < y2 - a < (Y + e l2  - (Y - E Y ,  

so 

I y2 - a /  < (y + t ) 2  - (y - t)2 = 4yt. 

The inequality I y2 - a1 < 4yt holds for any t such that 0 < e < y, and 
by choosing E small enough we can make 4yt less than any preassigned 
positive number. Thus I y2 - a1 is less than any positive number. Since 
Iy2 - a1 2. 0, we must have Iy2 - a1 = 0, proving y2 = a. 

If a > 0, the unique positive square root of a is denoted .\/a; thus 
a has exactly two square roots, namely .\/a and - 4 X .  We also write 

We now know that the positive real numbers are precisely the squares 
of the nonzero real numbers. This shows that the set of positive numbers 
R+ whose existence is affirmed by Property VI is completely determined 
by the multiplication function of R. A priori, i t  might seem that there 
could be several possible subsets R+ of R for which Properties VI  and VII 
hold and that in any discussion of the ordering of R the subset R+ would 
have to be specified, but we now know this to be unnecessary. The set R, 
together with the functions + and - , determine the ordering of R. It there- 
fore follows that the decimal expansions of elements of R are completely 
determined by the triple { R, +, - 1. Since the addition and multiplication 
of decimals follow the usual rules of arithmetic, the real number system is 
completely determined by Properties I-VII,  in the sense that if we have 
another triple { R’, +’, -‘) satisfying these properties then there will exist 
a unique one-one correspondence between R and R’ preserving sums and 
products. Thus we may speak of the real number system. I n  fact one often 
speaks of “the real numbers R”, meaning the real number system; this is 
strictly speaking erroneous, since R is merely a set and we also have to 
know what the operations + and - on this set are, but when there is no 
danger of confusion this is a convenient abbreviation. 

.\/T = 0. 

PROBLEMS 

1. Show that there exists one and (essentially) only one field with three elements. 
2. Prove in detail that for any a, b, c, d E R 

(a) -(a - b) = b - a  
(b) (a- b ) ( c -  d) = (a+ bd) - (ad+ bc). 

3. Prove that if a, b E R and a < b < 0, then l/a > l/b. 
4. (a) Is 223/71 greater than 22/7? 

(b) Is 265/153 greater than 1351/780? 
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5. For which x E R are the following inequalities true? 
(a) 3(x + 2) < z + 5 
(b) X’ - 52 - 6 2 0 

2 (c) ; > X - l  

(d) 2 - 3  > x + 3 7 0 .  

6. Show that if a, b, x, y E R and a < x < b, a < y < b, then Iy - X I  < b -a.  

7. Show that for any a, b E R, 

a + b + l a  - bl 
2 max ( a , b )  = 

min (a,  b )  = -max ( -a, - b )  = a + - l a  - b l .  
2 

8. The complex number system is defined to be the set C = R x R (called the 

9. 

10. 

11. 

12. 

13. 

complex numbers) together with the two functions from C x C into C, de- 
noted by + and -, that are given by (a, b) + (c ,  d )  = (a + c, b + d )  and 
(a, b) * (c, d) = (m - bd, ad + bc) for all a, b, c, d E R. 
(a) Show that C, together with the functions + and -, is a field. 
(b) Show that the map from R into C which sends each a E R into (a, 0) is 

one-one and “preserves addition and multiplication” (being careful to 
define the meaning of the words in quotes). 

(c) Identifying R with a subset of C by means of part (b) (so that we can 
consider R c C )  and setting i = (0, 1)) show that i2 = -1 and that each 
element of C can be written in a unique way as a + bi, with a, b E R. 

Is the subset @ of R bounded from above or below? Does it have an 1.u.b. or 
a g.l.b.? 

Find the g.1.b. and 1.u.b. of the following sets, giving reasons if you can. 

Prove that if a E R, a > I ,  then the set (a,  az, as, . . . J is not bounded from 
above. (Hint: First find a positive integer n such that a > 1 + - and prove 1 

n 

that a” > (1 + i)n 2 2.) 

Let X and Y be nonempty subsets of R whose union is R and such that each 
element of X is less than each element of Y .  Prove that there exists a E R 
such that X is one of the two sets 

( x E R : x < _ a ]  or { x E R : x < a ] .  

If S1, Sz are nonempty subsets of R that are bounded from above, prove that 
1.u.b. ( X  + 21 : x E 81, y E 8 2 )  = 1.u.b. Si+ 1.u.b. Sz. 
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14. Let a, b E R, with a < b. Show that there exists a number x E R such that 
a < x < b, with x rational or not rational, as we wish. 

15. “A real number is rational if and only if it has a periodic decimal expansion.” 
Define the present usage of the word periodic and prove the statement. 

16. Decimal (10-nary) expansions of real numbers were defined by special refer- 
ence to the number 10. Show that real numbers have b-nary expansions with 
analogous properties, where b is any integer greater than 1. 
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