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Week 5

1 Week 5

1.1 Lecture 1

Example. Find the inverse of

1 1 1
2 3 2
3 8 2


Solution: We do 1 1 1 1 0 0

2 3 2 0 1 0
3 8 2 0 0 1

→
 1 1 1 1 0 0

0 1 0 −2 1 0
0 5 −1 −3 0 1

→
 1 1 1 1 0 0

0 1 0 −2 1 0
0 0 −1 7 −5 1



→

 1 0 0 10 −6 1
0 1 0 −2 1 0
0 0 1 −7 5 −1


We conclude that

A−1 =

10 −6 1
−2 1 0
−7 5 −1


Indeed, it can be verified that AA−1 = A−1A = I.

• OBS: A and B ∈ Rn×n both invertible. Then AB is also invertible, and (AB)−1 = B−1A−1.
Proof. Note that

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Similarly,

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

proving the claim.

• Fact: A,B ∈ Rn×n such that BA = I. Then

(1) Both A and B are invertible.

(2) A−1 = B

(3) AB = I

• OBS: [
a c
b d

] [
d −c
−b a

]
=

[
ad− bc 0

0 −bc+ da

]
= (ad− bc)

[
1 0
0 1

]
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Definition: The determinant of a 2× 2 matrix

[
a c
b d

]
is

det

[
a c
b d

]
= ad− bc

• Fact: Let A =

[
a c
b d

]
∈ R2×2. Then A is invertible if and only if detA 6= 0. In this case we

have

detA−1 =
1

detA

[
d −c
−b a

]

Example: A =

[
1 −1
1 2

]
. Note that then we have detA = 1

3
, and therefore

A−1 =
1

3

[
2 1
−1 1

]
=

[
2/3 1/3
−1/3 1/3

]
• OBS: The linear transformation corresponding to the rotation by θ counter-clockwise has

matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]

If θ = π
2

then Rπ/2 =

[
0 1
−1 0

]
.

Observe that

det

[
a c
b d

]
= ad− bc =

[
−b
a

]
·
[
c
d

]
=

∣∣∣∣∣
∣∣∣∣∣
[
−b
a

] ∣∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣
∣∣∣∣∣
[
c
d

] ∣∣∣∣∣
∣∣∣∣∣ cos

(π
2
− θ
)

=
√
a2 + b2

√
c2 + d2 sin θ

• Fact: Let v, w ∈ R2. Then∣∣∣∣ det
[
v w

] ∣∣∣∣ = Area of a parallelogram

***END OF CHAPTER 2***

Definition. Let f : X → Y . The image of f is

Im(f) ≡ {y ∈ Y : ∃x ∈ X s.t. y = f(x)}

Example. f(x) = x2, f : R→ R. Then Im(f) = {y ∈ R : y ≥ 0}.

Definition. Let v1, v2, . . . , vr ∈ Rn. Then we define

span{v1, v2, . . . , vr} = {set of all linear combinations of v1, v2, . . . , vr}
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Recall that x is a linear combination of v1, v2, . . . , vr is ∃λ1, λ2, . . . , λr ∈ R such that

x = λ1v1 + λ2v2 + · · ·+ λrvr

Example. Let v1 =

1
1
0

 and v2 =

 1
0
−1

. Then x = 3v1 + 2v2 =

5
3
2

 is a linear combination of

v1, v2.
Example. Let v ∈ Rn. Then

span{v} = {x ∈ Rn : x = λv, for some λ ∈ R} = {λv : λ ∈ R}

• OBS: If v1 is not a multiple of v2 and v2 is not a multiple of v1, then span{v1, v2} is the plane
that contains v1, v2 and the origin.

Let T : Rn → Rk be a linear transformation. Let A ∈ Rk×n be its matrix, i.e., T (x) = Ax,∀x ∈ Rn.
Then

Im(f) = {y ∈ Rk : y = T (x)} = {T (x) : x ∈ Rn} = {Ax : x ∈ Rn}

Let A =
[
A1 A2 . . . An

]
, with Aj being the jth column of A, and let x =


x1
x2
...
xn

. Then

Im(f) =


[
A1 A2 . . . An

]

x1
x2
...
xn

 :


x1
x2
...
xn

 ∈ Rn

 =

{
n∑
j=1

xjAj : xj ∈ R, 1 ≤ j ≤ n

}

= span{A1, A2, . . . , An}

• OBS: T (x) = Ax. Then Im(T ) = span{columns of A}

Definition. Im(A) = span{columns of A}.

Example. Let A =

2 −1
1 0
0 1

. Let v =

−1
1
1

. Does v ∈ Im(A)?

To answer this question, we attempt to solve the linear system

v = x1A1 + x2A2 = x1

2
1
0

+ x2

−1
0
1


=⇒

−1
1
1

 =

2 −1
1 0
0 1

[x1
x2

]
Applying Gaussian elimination, we obtain the augmented matrix 2 −1 −1

1 0 1
0 1 1

→
 2 −1 −1

0 1/2 3/2
0 1 1

→
 2 −1 −1

0 1/2 3/2
0 0 −2


implying 0 = −12, which implies that @x1, x2 ∈ R : v = x1A1 + x2A2. It follows that v /∈ Im(A).
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• b = Ax is consistent ⇐⇒ b ∈ span{columns of A} = Im(A), i.e., Ax = b has at least one
solution ⇐⇒ b ∈ Im(A).

Definition:

(1) Let T : Rn → Rk be a linear transformation. The Kernel of T is defined as

ker(T ) = {x ∈ Rn : T (x) = 0}

(2) Let A ∈ Rk×n. Then ker(A) = {x ∈ Rn : Ax = 0}.

• OBS: 0 ∈ ker(T ), or equivalently, 0 ∈ ker(A).

Example. Find the kernel of A =

[
1 −1 0
0 1 1

]
. We solve the system Ax = 0. Using row

operations we have[
1 −1 0 0
0 1 1 0

]
→
[

1 0 1 0
1 1 1 0

]
→
[

1 −1 0 0
0 1 1 0

]
Then we set x1 = −t, x2 = −t and x3 = t, for any t ∈ R. It follows that

x =

−t−t
t

 = t

−1
−1
1

 (1)

Therefore, as any solution x to the system Ax = 0 is of the form in (1), we conclude that

ker(A) = span


−1
−1
1


1.2 Lecture 2

Summary of lecture 1:

• ker(A) = {x : Ax = 0} ⊂ Rn.

• Im(A) = {y : ∃x : y = Ax} ⊂ Rk.

• A ∈ Rk×n. T (x) = Ax. Then ker(T ) = ker(A), and Im(T ) = Im(A).

Facts:

• A ∈ Rk×n. Then ker(A) = {0} ⇐⇒ rank(A) = n.

• If ker(A) = {0}, then rank(A) = n ≤ k.

• Let k = n. Then ker(A) = {0} ⇐⇒ A is invertible.
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In sumary: Let A ∈ Rn×n. The following statements are equivalent:

• A is invertible.

• The linear system Ax = b has a unique solution, ∀b.

• rref(A) = I.

• rank(A) = n.

• Im(A) = Rn.

• ker(A) = {0}.

Definition. Let S ⊂ Rn. S is called a subspace of Rn if:

(1) 0 ∈ S

(2) v, w ∈ S =⇒ v + w ∈ S

(3) v ∈ S, λ ∈ R =⇒ λv ∈ S

Examples.

(1) S = {0} is a subspace.

(2) S = Rn is a subspace.

(3) Let v ∈ Rn. The smallest subspace that contains v is the line L = {λv : λ ∈ R}. Indeed,

(a) 0 ∈ L, since 0 = 0× v.

(b) Let w1, w2 ∈ L. Then w1 = λ1v, w2 = λ2v, and therefore w1 + w2 = (λ1 + λ2)v ∈ L, since
λ1 + λ2 ∈ R.

(c) Let w ∈ L and β ∈ R, then w = λv, and therefore βw = (βλ)v ∈ L, since βλ ∈ R.

(4) Let v1, v2 ∈ Rn. Then the smallest subspace of Rn that contains v1 and v2 is the plane
P = {plane that contains v1, v2 and 0}.

(5) S = {(x, y) : x2 + y2 = 1} ⊂ R2 is not a subspace.

(6) S = {(x, y) : y = x2} ⊂ R2 is not a subspace.

Theorem: Let A ∈ Rk×n. Then ker(A) is a subspace of Rn, and Im(A) is a subspace of Rk.
Proof. It suffices to verify the definition of subspace. Indeed,

(1) A× 0 = 0, and thus 0 ∈ ker(A).

(2) Let v1, v2 ∈ ker(A). Then Av1 = Av2 = 0, and therefore A(v1 + v2) = Av1 + Av2 = 0 =⇒
v1 + v2 ∈ ker(A).

(3) Let v ∈ ker(A) and λ ∈ R. Then A(λv) = λ(Av) = λ× 0 = 0. Then λv ∈ ker(A).

We conclude that ker(A) is a subspace of Rn. Similarly for Im(A),

(1) As 0 ∈ Rn is such that A× 0 = 0, we have that 0 ∈ Im(A).
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(2) Let w1, w2 ∈ Im(A). Then ∃v1, v2 ∈ Rn : w1 = Av1 and w2 = Av2. It follows that w1 + w2 =
Av1 +Av2 = A(v1 + v2). Since v1 + v2 ∈ Rn, then ∃v = v1 + v2 ∈ Rn : w1 +w2 = Av, implying
that w1 + w2 ∈ Im(A).

(3) Let w ∈ Im(A) and λ ∈ R. Then ∃v ∈ Rn : w = Av. It follows that λw = λ(Av) = A(λv).
As λv ∈ Rn, then ∃v′ = λv ∈ Rn : λw = Av′ = A(λv), following that λw ∈ Im(A).

concluding the proof.

Recall: Let v1, . . . , vn ∈ Rk. Then span{v1, . . . , vn} = {
∑n

i=1 λivi : λi ∈ R} is a subspace, since
span{v1, . . . , vn} = {

∑n
i=1 λivi : λi ∈ R} = Im(

[
v1 v2 · · · vn

]
).

Definition. Let v1, . . . , vr ∈ Rn. The set {v1, . . . , vr} is linearly independent (or equivalently,
the vectors v1, . . . , vr are linearly independent) if

x1v1 + · · ·+ xrvr = 0 =⇒ x1 = x2 = · · · = xr = 0

OBS:

• Note that

[
v1 . . . vr

] x1...
xr

 = x1v1 + . . . xrvr

Then v1, . . . , vr are linearly independent if and only if ker(
[
v1 . . . vr

]
) = {0}.

• Assume v1, . . . , vr is linearly dependent (not linearly independent). Then we can have∑r
i=1 xivi = 0 and xk 6= 0, for some k ∈ {1, . . . , r} (can be multiple indices k). Let l

be the largest of them (i.e., l is such that xl 6= 0 and xi = 0,∀i ∈ {l + 1, . . . , r}. Then

r∑
i=1

xivi = 0 =⇒
l∑

i=1

xivi = 0 =⇒ vl = − 1

xl

l−1∑
i=1

xivi

• v1, . . . , vr are linearly dependent if and only if there exists l ∈ {1, 2, . . . , r} such that vl is a
linear combination of v1, v2, . . . vl−1.

• Let v ∈ Rn. When is v linearly independent? Note that for x ∈ Rn, xv = 0 ⇐⇒ x = 0 or
v = 0. Thus v is linearly independent if and only if v 6= 0.

• Let v1, v2 ∈ Rn, with v1 6= 0, v2 6= 0 (if one of them is 0, then any set of vectors containing
that vector is linearly dependent).
v1, v2 are linearly dependent if and only if one of them is 0, or v2 is a multiple of v1, i.e.,
v2 = λv1, for some λ ∈ R.

Definition. Let S ⊂ Rn be a subspace. We say the set {v1, v2, . . . , vr} is a basis of S if:

(1) S = span{v1, . . . , vr}.

(2) {v1, . . . , vr} is linearly independent.
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Given a subspace S, we would like to obtain a basis of such S. it can be noted that we can be
given a subspace S in terms of the kernel (as a set of solutions to an homogeneous linear system
of equations), or as the image of a matrix (if we are given a set of vectors that span S).
Examples.

(1) S solutions to

x1 + 2x2 − x3 = 0

x1 + x3 = 0

thus S = ker

([
1 2 −1
1 0 1

])
.

(2) Let S = span


 1
−1
0

 ,
2

1
5

. Then S = Im

 1 2
−1 1
0 5

.

7


